Wei Guohao, Li Bin, Huang Mengyang, Lv Mengyao, Liang Zihui, Zhu Chuandong, Ge Lilin, Chen Jing
Department of Oncology The Second Hospital of Nanjing Nanjing University of Chinese Medicine Nanjing China.
The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital Nanjing Medical University Huai'an China.
MedComm (2020). 2025 Sep 1;6(9):e70372. doi: 10.1002/mco2.70372. eCollection 2025 Sep.
Tumor-associated macrophages (TAMs) are prominent constituents of solid tumors, and their prevalence is often associated with poor clinical outcomes. These highly adaptable immune cells undergo dynamic functional changes within the immunosuppressive tumor microenvironment (TME), engaging in reciprocal interactions with malignant cells. This bidirectional communication facilitates concurrent phenotypic transformation: tumor cells shift toward invasive mesenchymal states, whereas TAMs develop immunosuppressive, pro-tumorigenic traits. Increasing evidence highlights metabolic reprogramming, characterized by dysregulation of lipid metabolism, amino acid utilization, and glycolytic activity, as the fundamental molecular basis orchestrating this pathological symbiosis. However, a comprehensive understanding of how metabolic reprogramming specifically coordinates the mutual polarization of tumor cells and TAMs is lacking. This review thoroughly examines the molecular mechanisms governing this co-polarization process, detailing critical transcriptional regulators, essential signaling pathways, and the maintenance of adaptive phenotypes within the TME. Furthermore, this review critically assesses promising therapeutic strategies aimed at disrupting this alliance, including the use of metabolically targeted agents, engineered chimeric antigen receptor macrophages, and TAM-selective nanoparticle delivery systems. These insights provide a crucial foundation for the development of next-generation cancer immunotherapies focused on reprogramming pathological polarization dynamics to overcome treatment resistance and improve clinical outcomes.
肿瘤相关巨噬细胞(TAM)是实体瘤的主要组成部分,其存在往往与不良临床预后相关。这些高度适应性的免疫细胞在免疫抑制性肿瘤微环境(TME)中经历动态功能变化,与恶性细胞进行相互作用。这种双向通讯促进了同时发生的表型转变:肿瘤细胞向侵袭性间充质状态转变,而TAM则形成免疫抑制、促肿瘤发生的特性。越来越多的证据表明,以脂质代谢、氨基酸利用和糖酵解活性失调为特征的代谢重编程是协调这种病理共生的基本分子基础。然而,目前缺乏对代谢重编程如何具体协调肿瘤细胞和TAM相互极化的全面理解。本综述全面研究了控制这种共极化过程的分子机制,详细阐述了关键转录调节因子、重要信号通路以及TME内适应性表型的维持。此外,本综述批判性地评估了旨在破坏这种联盟的有前景的治疗策略,包括使用代谢靶向药物、工程化嵌合抗原受体巨噬细胞和TAM选择性纳米颗粒递送系统。这些见解为开发下一代癌症免疫疗法提供了关键基础,该疗法专注于重新编程病理极化动态以克服治疗抗性并改善临床预后。