Suppr超能文献

氧化物基固态电池时代固态电解质的新兴加工指南。

Emerging processing guidelines for solid electrolytes in the era of oxide-based solid-state batteries.

作者信息

Balaish Moran, Kim Kun Joong, Chu Hyunwon, Zhu Yuntong, Gonzalez-Rosillo Juan Carlos, Kong Lingping, Paik Haemin, Weinmann Steffen, Hood Zachary D, Hinricher Jesse, Miara Lincoln J, Rupp Jennifer L M

机构信息

TUMint. Energy Research GmbH, Lichtenbergstr. 4, Garching 85747, Germany.

Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.

出版信息

Chem Soc Rev. 2025 Sep 4. doi: 10.1039/d5cs00358j.

Abstract

The current most mature, competitive, and dominant battery technology for electric vehicles (EVs) is the Li-ion battery (LIB). As future EVs will rely on battery technology, further innovation is essential for the success of mobility electrification towards improving the driving range and reducing the charging time and price competitiveness. The commonly cited next generation technologies are hybrid and solid-state batteries (SSBs) enabling high energy densities using lithium. Through a critical approach, we dismantle the oxide-based solid-state battery electrolytes, their chemistries and ceramic manufacture. We evaluate the relevance of solid-state electrolytes and their integration into battery types compared to Li-ion batteries considering a holistic life cycle thinking of sustainable battery production. We evaluate the relevant oxide-based materials and requirements, the material supply chain, and diverse recycling concepts. We raise critical questions about the development of oxide-based SSBs mainly for large-scale production and EV applications, which demand attention to fill current scientific and technological gaps. Next, we critically discuss three major ceramic synthesis routes toward oxide-based solid electrolytes: solid-state processing, wet-chemical solution processing, and vapor deposition. In-depth processing guidelines, hindrances, and opportunities are highlighted. Through a high-level approach, the advantages and disadvantages of each processing method are introduced, while accounting for four major processing metrics applicable for obtaining high Li-ion conducting solid-state Li oxide electrolytes: chemistry of the precursors, dopants and stoichiometry, synthesis temperature, and atmosphere and pressure. We broaden the processing discussion from a single electrolyte component to electrode/electrolyte tandems examining interfaces during cell fabrication, possible cell architectures, design-specific processing methods, challenges, and mitigating solutions for both bulk-type batteries and thin film batteries. Finally, future perspectives and key guidelines for the realization of all SSBs are analyzed and discussed.

摘要

当前,用于电动汽车(EV)的最成熟、最具竞争力且占主导地位的电池技术是锂离子电池(LIB)。由于未来的电动汽车将依赖电池技术,进一步创新对于实现移动电气化的成功至关重要,即提高续航里程、缩短充电时间并提升价格竞争力。通常被提及的下一代技术是混合电池和固态电池(SSB),它们能够使用锂实现高能量密度。通过一种批判性的方法,我们剖析了基于氧化物的固态电池电解质、它们的化学性质以及陶瓷制造过程。考虑到可持续电池生产的整体生命周期思维,我们评估了固态电解质的相关性以及它们与锂离子电池相比在电池类型中的集成情况。我们评估了相关的氧化物基材料及其要求、材料供应链以及各种回收概念。我们提出了关于主要用于大规模生产和电动汽车应用的基于氧化物的固态电池发展的关键问题,这些问题需要引起关注以填补当前的科技空白。接下来,我们批判性地讨论了制备基于氧化物的固体电解质的三种主要陶瓷合成路线:固态加工、湿化学溶液加工和气相沉积。强调了深入的加工指导方针、障碍和机遇。通过一种高层次的方法,介绍了每种加工方法的优缺点,同时考虑了适用于获得高锂离子传导性固态锂氧化物电解质的四个主要加工指标:前驱体的化学性质、掺杂剂和化学计量比、合成温度以及气氛和压力。我们将加工讨论从单一电解质组件扩展到电极/电解质串联结构,研究电池制造过程中的界面、可能的电池架构、特定设计的加工方法、挑战以及针对块状电池和薄膜电池的缓解解决方案。最后,分析并讨论了全固态电池实现的未来前景和关键指导方针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验