Qian Lanting, Wang Yubo, Liu Jue, Kochetkov Ivan, Chen Ning, Dean Cameron, Nazar Linda F
Department of Chemistry, Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1, Canada.
Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada.
Angew Chem Int Ed Engl. 2025 Aug 20:e202509209. doi: 10.1002/anie.202509209.
Lithium metal chlorides are promising superionic conductors for all-solid-state batteries (SSBs) due to their favorable mechanical properties, high ionic conductivity, and good oxidative stability (up to >4.2 V versus Li/Li). Nonetheless, chloride solid electrolytes (SEs) still undergo electrochemical degradation when paired with high-voltage cathodes such as LiNiCoMnO. A viable strategy to enhance the intrinsic electrochemical stability of chloride electrolytes is to partially substitute Cl with F. By leveraging complementary insights from neutron and X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and electrochemical studies, we investigate the interplay between ionic and electronic conductivity, voltage stability, and overall battery performance of a family of new dual-halogen SEs-LiHfClF. All-solid-state cells utilizing LiHfClF as the electrolyte demonstrate much-enhanced battery performance compared to LiHfCl. This improvement is mainly attributed to the formation of a kinetically stable LiF-rich cathode electrolyte interphase (CEI), which inhibits detrimental reactions between the cathode and the SE, as revealed by ToF-SIMS studies. The findings from this study are applicable to other dual-halogen solid ionic conductors, offering valuable insights into the relationship between intrinsic electrochemical window (IEW), electronic and ionic conductivity, and battery performance in dual-halogen solid-state electrolytes.
锂金属氯化物因其良好的机械性能、高离子导电性和良好的氧化稳定性(相对于Li/Li高达>4.2 V),是全固态电池(SSB)中很有前景的超离子导体。尽管如此,氯化物固体电解质(SE)与LiNiCoMnO等高压阴极配对时仍会发生电化学降解。提高氯化物电解质固有电化学稳定性的一个可行策略是用F部分替代Cl。通过利用中子和X射线衍射、X射线吸收光谱、X射线光电子能谱(XPS)、飞行时间二次离子质谱(ToF-SIMS)和电化学研究的互补见解,我们研究了一系列新型双卤化物SEs-LiHfClF的离子和电子导电性、电压稳定性以及整体电池性能之间的相互作用。与LiHfCl相比,使用LiHfClF作为电解质的全固态电池表现出大大增强的电池性能。这种改进主要归因于形成了动力学稳定的富含LiF的阴极电解质界面(CEI),ToF-SIMS研究表明,该界面抑制了阴极与SE之间的有害反应。这项研究的结果适用于其他双卤化物固体离子导体,为双卤化物固态电解质的固有电化学窗口(IEW)、电子和离子导电性以及电池性能之间的关系提供了有价值的见解。