Suppr超能文献

提高生物网络比对有效性的十条实用技巧和窍门。

Ten practical tips and tricks to improve the effectiveness of biological network alignment.

作者信息

Agapito Giuseppe, Cannataro Mario, Cinaglia Pietro, Milano Marianna

机构信息

Department of Law, Economics and Social Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.

Data Analytics Research Center, Magna Graecia University of Catanzaro, Catanzaro, Italy.

出版信息

PLoS Comput Biol. 2025 Sep 4;21(9):e1013386. doi: 10.1371/journal.pcbi.1013386. eCollection 2025 Sep.

Abstract

Network alignment (NA) is a computational methodology employed to compare biological networks across different species or conditions. By identifying conserved structures, functions, and interactions, NA provides invaluable insights into shared biological processes, evolutionary relationships, and system-level behaviors. This manuscript presents a comprehensive overview of NA methodologies, including the importance of preprocessing network data, selecting suitable input formats, and understanding diverse network types such as attributed, temporal, and multilayer networks. Additionally, it explores key challenges such as seed nodes selection, algorithm configuration, and cross-species alignment, emphasizing the necessity of integrating functional annotations, sequence similarity, and network topology for biologically meaningful results. Various NA strategies, including Local and Global Network Alignment, are discussed alongside their respective advantages and limitations. Practical recommendations for effectively documenting and visualizing NA experiments are also provided, ensuring reproducibility and clarity in research. By leveraging diverse alignment tools and adopting best practices, researchers can unlock the potential of NA to advance our understanding of complex biological systems.

摘要

网络比对(NA)是一种用于比较不同物种或条件下生物网络的计算方法。通过识别保守的结构、功能和相互作用,NA为共享的生物过程、进化关系和系统级行为提供了宝贵的见解。本文全面概述了NA方法,包括网络数据预处理的重要性、选择合适的输入格式以及理解不同类型的网络,如实值网络、时间网络和多层网络。此外,还探讨了诸如种子节点选择、算法配置和跨物种比对等关键挑战,强调了整合功能注释、序列相似性和网络拓扑以获得具有生物学意义结果的必要性。讨论了各种NA策略,包括局部和全局网络比对,以及它们各自的优点和局限性。还提供了有效记录和可视化NA实验的实用建议,以确保研究的可重复性和清晰度。通过利用多样的比对工具并采用最佳实践,研究人员可以释放NA的潜力,以推进我们对复杂生物系统的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/071c/12410751/841a002133ef/pcbi.1013386.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验