Li Jinghang, Liao Hao, Tian Shuangyu, Liu Longhui, Xu Haixing, Yan Lesan
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China; Shenzhen Institute of Wuhan University of Technology, Shenzhen 518000, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Acta Biomater. 2025 Sep 2. doi: 10.1016/j.actbio.2025.09.001.
Tumor heterogeneity poses formidable challenges to effective cancer therapy, necessitating the implementation of combination regimens to achieve enhanced antitumor efficacy. Optimizing drug administration sequences is pivotal to harnessing synergistic effects and achieving superadditive therapeutic outcomes (1 + 1 > 2). Erlotinib, an epidermal growth factor receptor (EGFR) inhibitor, dynamically reprograms apoptotic pathways, sensitizing tumor cells to subsequent DNA-damaging agents like doxorubicin within a defined temporal window, thereby augmenting chemotherapy efficacy. To advance this strategy toward clinical relevance, we developed a pH-responsive nanoplatform (PEDHNPs) for sequential control of drug delivery. This system integrates a dual acid-responsive polymeric architecture comprising a hydrazone-linked polycarbonate conjugated with doxorubicin as a prodrug and a ketal-based polycarbonate enabling temporal regulation of drug release. Erlotinib is encapsulated within the hydrophobic core during micelle self-assembly. In the acidic tumor microenvironment, PEDHNPs rapidly liberate erlotinib via ketal hydrolysis, followed by sustained doxorubicin release through hydrazone cleavage. This orchestrated delivery enhances EGFR inhibition and activates caspase-8-mediated apoptosis, potentiating doxorubicin's antitumor effect. In vitro experiments showed that at a doxorubicin concentration of 80 µg/mL, PEDHNPs achieved a proliferation inhibition rate of 71.54 ± 0.42 % in A549 cells, which was significantly higher than that of the monotherapy groups (Erlotinib: 31.48 ± 0.19 %; Doxorubicin: 63.18 ± 1.04 %) and the control group with amide bond conjugation (54.21 ± 1.13 %). In the NSCLC mouse model, treatment with PEDHNPs resulted in a 95.1 % reduction in tumor volume compared to the control PBS group. These offer a promising paradigm for achieving precise cancer therapy through sequential drug delivery. STATEMENT OF SIGNIFICANCE: Tumor heterogeneity compromises the efficacy of monotherapies, necessitating rationally designed combination regimens. Optimizing drug administration sequences is critical for harnessing synergistic interactions and achieving superadditive therapeutic outcomes (1 + 1 > 2). Here, a pH-responsive polycarbonate-based nanoparticle (PEDHNP) incorporating hydrazone and ketal linkages was designed for sequential co-delivery of erlotinib and doxorubicin. This sequence-controlled release strategy achieves early EGFR inhibition followed by activation of caspase-8-mediated apoptosis, thereby potentiating the antitumor activity of doxorubicin. In vitro, PEDHNPs exhibited superior antiproliferative and proapoptotic effects compared with monotherapies, single-drug nanoparticles, and amide-linked nanoparticle controls. In vivo, PEDHNPs achieved marked tumor growth suppression in a non-small cell lung cancer model, establishing a versatile platform for precision oncology via sequential drug delivery.
肿瘤异质性给有效的癌症治疗带来了巨大挑战,因此需要实施联合治疗方案以提高抗肿瘤疗效。优化给药顺序对于发挥协同作用和实现超相加治疗效果(1 + 1 > 2)至关重要。厄洛替尼是一种表皮生长因子受体(EGFR)抑制剂,可动态重编程凋亡途径,在特定时间窗口内使肿瘤细胞对随后的DNA损伤剂(如多柔比星)敏感,从而提高化疗疗效。为了使该策略更具临床相关性,我们开发了一种用于药物递送顺序控制的pH响应纳米平台(PEDHNPs)。该系统集成了一种双酸响应聚合物结构,包括与多柔比星共轭作为前药的腙连接聚碳酸酯和基于缩酮的聚碳酸酯,可实现药物释放的时间调控。厄洛替尼在胶束自组装过程中被包裹在疏水核心内。在酸性肿瘤微环境中,PEDHNPs通过缩酮水解快速释放厄洛替尼,随后通过腙裂解持续释放多柔比星。这种精心安排的递送增强了EGFR抑制并激活了caspase-8介导的凋亡,增强了多柔比星的抗肿瘤作用。体外实验表明,在多柔比星浓度为80 µg/mL时,PEDHNPs在A549细胞中实现了71.54 ± 0.42%的增殖抑制率,显著高于单药治疗组(厄洛替尼:31.48 ± 0.19%;多柔比星:63.18 ± 1.04%)和酰胺键共轭对照组(54.21 ± 1.13%)。在非小细胞肺癌小鼠模型中,与对照PBS组相比,用PEDHNPs治疗导致肿瘤体积减少了95.1%。这些为通过顺序药物递送实现精确癌症治疗提供了一个有前景的范例。意义声明:肿瘤异质性损害了单药治疗的疗效,因此需要合理设计联合治疗方案。优化给药顺序对于利用协同相互作用和实现超相加治疗效果(1 + 1 > 2)至关重要。在此,设计了一种包含腙和缩酮连接的pH响应聚碳酸酯基纳米颗粒(PEDHNP),用于厄洛替尼和多柔比星的顺序共递送。这种顺序控制释放策略实现了早期EGFR抑制,随后激活caspase-8介导的凋亡,从而增强了多柔比星的抗肿瘤活性。在体外,与单药治疗、单药纳米颗粒和酰胺连接纳米颗粒对照相比,PEDHNPs表现出优异的抗增殖和促凋亡作用。在体内,PEDHNPs在非小细胞肺癌模型中实现了显著的肿瘤生长抑制,通过顺序药物递送建立了一个用于精准肿瘤学的通用平台。