Norzagaray-Valenzuela Claudia Desireé, Valdez-Flores Marco Antonio, Camberos-Barraza Josue, De la Herrán-Arita Alberto Kousuke, Osuna-Ramos Juan Fidel, Magaña-Gómez Javier, Angulo-Rojo Carla, Guadrón-Llanos Alma Marlene, Aviña-Padilla Katia, Calderón-Zamora Loranda
Faculty of Biology, Autonomous University of Sinaloa, Culiacan, Mexico.
Graduate Program in Biological Sciences, Faculty of Biology, Autonomous University of Sinaloa, Culiacan, Mexico.
Front Mol Biosci. 2025 Aug 20;12:1621413. doi: 10.3389/fmolb.2025.1621413. eCollection 2025.
Type 2 diabetes mellitus (T2DM) and Hypertension (HTN) frequently coexist and synergistically exacerbate vascular and immune dysfunction. Despite their clinical interrelation, these diseases have traditionally been studied in isolation, and the molecular mechanisms underlying their comorbidity remain poorly understood. This study aimed to uncover shared transcriptional programs and disease-specific regulatory networks contributing to cardiometabolic dysfunction.
We systematically selected transcriptomic datasets and employed an integrative systems biology approach that combined differential gene expression analysis, co-expression network construction, protein-protein interaction mapping, transcription factor activity inference, and network rewiring analysis. Functional enrichment analyses were conducted to elucidate biological processes associated with disease-specific modules.
We identified distinct regulatory modules: ME3 in T2DM, enriched in metabolic stress response, intracellular trafficking, and inflammation, and ME7 in HTN, enriched in immune response and vascular remodeling. Protein interaction networks revealed key hub genes such as , , and as T2DM-specific hubs, while MAPK1, , and RPS6 were central in HTN. Network rewiring analysis showed condition-specific changes in gene connectivity, particularly in and gaining prominence in T2DM, and and showing decreased connectivity in HTN. Notably, transcription factor activity analysis revealed shared regulators and implicated in inflammation, oxidative stress, and vascular remodeling, highlighting a transcriptional convergence between the two conditions.
This study provides novel insights into the molecular crosstalk between T2DM and HTN by identifying conserved transcriptional regulators and rewired gene networks. Our findings support the existence of a shared regulatory architecture underlying cardiometabolic comorbidity and suggest promising diagnostic and therapeutic targets for precision medicine.
2型糖尿病(T2DM)和高血压(HTN)常并存,并协同加剧血管和免疫功能障碍。尽管这两种疾病存在临床关联,但传统上它们是分开研究的,其合并症的分子机制仍知之甚少。本研究旨在揭示导致心脏代谢功能障碍的共同转录程序和疾病特异性调控网络。
我们系统地选择了转录组数据集,并采用了一种综合系统生物学方法,该方法结合了差异基因表达分析、共表达网络构建、蛋白质-蛋白质相互作用图谱、转录因子活性推断和网络重连分析。进行功能富集分析以阐明与疾病特异性模块相关的生物学过程。
我们识别出了不同的调控模块:T2DM中的ME3,富集于代谢应激反应、细胞内运输和炎症;HTN中的ME7,富集于免疫反应和血管重塑。蛋白质相互作用网络揭示了关键的枢纽基因,如[具体基因1]、[具体基因2]和[具体基因3]作为T2DM特异性枢纽,而MAPK1、[具体基因4]和RPS6在HTN中处于核心地位。网络重连分析显示基因连接性存在条件特异性变化,特别是[具体基因5]和[具体基因6]在T2DM中变得突出,而[具体基因7]和[具体基因8]在HTN中连接性降低。值得注意的是,转录因子活性分析揭示了共同的调节因子[具体调节因子1]和[具体调节因子2]与炎症、氧化应激和血管重塑有关,突出了这两种疾病之间的转录趋同。
本研究通过识别保守的转录调节因子和重连的基因网络,为T2DM和HTN之间的分子串扰提供了新的见解。我们的发现支持心脏代谢合并症存在共同的调控结构,并为精准医学提出了有前景的诊断和治疗靶点。