Kim Jane Paik, Yang Hyun-Joon
Stanford University School of Medicine, Stanford, CA, USA.
Method Innov. 2024 Jun;17(2):111-118. doi: 10.1177/20597991241240081. Epub 2024 Apr 15.
We motivate and present the methodology of vignette studies. The primary contribution of this paper is our proposal of a novel vignette study design: "SMART vignettes." Our design has two notable features: the first is its use of sequential randomization, which conceptually originates from the sequential multiple assignment randomization trial (SMART) design developed by Murphy (2004). The second feature is adaptive allocation. These new features in vignette studies offer unique advantages not offered by traditional vignettes: (1) valid causal inferences on the conditional distributions of the primary outcome of interest, given other factors, (2) balanced allocations across groups, and (3) a greater degree of interactivity for the survey respondent. We illustrate the utility of our method using a case example of a vignette study used to probe physicians' attitudes toward an AI-embedded clinical system. In this example, a SMART vignette was used to randomize hypothetical scenarios to gain a better understanding of the causal impact of physician attitudes, given emerging evidence that a range of factors including previous decisions, play a role in influencing clinical decisions. We simulated hypothetical vignette studies under both SMART and conventional (i.e. single randomization at baseline) designs. We varied the number of factors for each study and fixed each factor to have two levels. Relative loss was used to compare the degree of imbalance between groups. Both designs had smaller relative losses with larger sample sizes. The SMART study design had lower loss than its conventional counterpart for all values of for all studies, indicating better balance. As demonstrated by the relative loss in our simulations, our proposed SMART vignette design has an advantage over the conventional design. This method holds promise in generating new knowledge in decision making scenarios occurring over multiple and discrete time points.
我们介绍并阐述了 vignette 研究的方法。本文的主要贡献在于我们提出了一种新颖的 vignette 研究设计:“SMART vignettes”。我们的设计有两个显著特点:第一个是其采用的序贯随机化,这在概念上源自 Murphy(2004 年)开发的序贯多重分配随机化试验(SMART)设计。第二个特点是适应性分配。vignette 研究中的这些新特点提供了传统 vignette 所没有的独特优势:(1)在给定其他因素的情况下,对感兴趣的主要结局的条件分布进行有效的因果推断;(2)各群组间的均衡分配;(3)为调查对象提供更高程度的交互性。我们通过一个 vignette 研究的案例来阐述我们方法的实用性,该研究用于探究医生对一个嵌入人工智能的临床系统的态度。在这个例子中,使用 SMART vignette 对假设情景进行随机化,以便在有新证据表明包括先前决策在内的一系列因素在影响临床决策中起作用的情况下,更好地理解医生态度的因果影响。我们在 SMART 和传统(即基线时单次随机化)设计下模拟了假设的 vignette 研究。我们对每项研究的因素数量进行了变化,并将每个因素固定为两个水平。使用相对损失来比较各群组间的不平衡程度。两种设计在样本量较大时相对损失都较小。对于所有研究的所有 值,SMART 研究设计的损失都低于其传统对应设计,表明平衡更好。正如我们模拟中的相对损失所表明的,我们提出的 SMART vignette 设计比传统设计具有优势。这种方法有望在多个离散时间点出现的决策场景中产生新知识。