了解医生对医疗保健中人工智能的看法:一项序贯多重赋值随机 vignette 研究方案

Understanding Physician's Perspectives on AI in Health Care: Protocol for a Sequential Multiple Assignment Randomized Vignette Study.

作者信息

Kim Jane Paik, Yang Hyun-Joon, Kim Bohye, Ryan Katie, Roberts Laura Weiss

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.

出版信息

JMIR Res Protoc. 2024 Apr 4;13:e54787. doi: 10.2196/54787.

Abstract

BACKGROUND

As the availability and performance of artificial intelligence (AI)-based clinical decision support (CDS) systems improve, physicians and other care providers poised to be on the front lines will be increasingly tasked with using these tools in patient care and incorporating their outputs into clinical decision-making processes. Vignette studies provide a means to explore emerging hypotheses regarding how context-specific factors, such as clinical risk, the amount of information provided about the AI, and the AI result, may impact physician acceptance and use of AI-based CDS tools. To best anticipate how such factors influence the decision-making of frontline physicians in clinical scenarios involving AI decision-support tools, hypothesis-driven research is needed that enables scenario testing before the implementation and deployment of these tools.

OBJECTIVE

This study's objectives are to (1) design an original, web-based vignette-based survey that features hypothetical scenarios based on emerging or real-world applications of AI-based CDS systems that will vary systematically by features related to clinical risk, the amount of information provided about the AI, and the AI result; and (2) test and determine causal effects of specific factors on the judgments and perceptions salient to physicians' clinical decision-making.

METHODS

US-based physicians with specialties in family or internal medicine will be recruited through email and mail (target n=420). Through a web-based survey, participants will be randomized to a 3-part "sequential multiple assignment randomization trial (SMART) vignette" detailing a hypothetical clinical scenario involving an AI decision support tool. The SMART vignette design is similar to the SMART design but adapted to a survey design. Each respondent will be randomly assigned to 1 of the possible vignette variations of the factors we are testing at each stage, which include the level of clinical risk, the amount of information provided about the AI, and the certainty of the AI output. Respondents will be given questions regarding their hypothetical decision-making in response to the hypothetical scenarios.

RESULTS

The study is currently in progress and data collection is anticipated to be completed in 2024.

CONCLUSIONS

The web-based vignette study will provide information on how contextual factors such as clinical risk, the amount of information provided about an AI tool, and the AI result influence physicians' reactions to hypothetical scenarios that are based on emerging applications of AI in frontline health care settings. Our newly proposed "SMART vignette" design offers several benefits not afforded by the extensively used traditional vignette design, due to the 2 aforementioned features. These advantages are (1) increased validity of analyses targeted at understanding the impact of a factor on the decision outcome, given previous outcomes and other contextual factors; and (2) balanced sample sizes across groups. This study will generate a better understanding of physician decision-making within this context.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/54787.

摘要

背景

随着基于人工智能(AI)的临床决策支持(CDS)系统的可用性和性能不断提高,处于一线的医生和其他医疗服务提供者将越来越多地承担在患者护理中使用这些工具并将其输出纳入临床决策过程的任务。案例研究提供了一种方法,可用于探索有关特定背景因素(如临床风险、提供的有关AI的信息量以及AI结果)如何影响医生对基于AI的CDS工具的接受和使用的新假设。为了最好地预测这些因素如何影响涉及AI决策支持工具的临床场景中一线医生的决策,需要进行假设驱动的研究,以便在这些工具实施和部署之前进行场景测试。

目的

本研究的目的是:(1)设计一项基于网络的原创性案例调查,其特色是基于基于AI的CDS系统的新兴或实际应用的假设场景,这些场景将根据与临床风险、提供的有关AI的信息量以及AI结果相关的特征进行系统变化;(2)测试并确定特定因素对医生临床决策中显著的判断和认知的因果效应。

方法

将通过电子邮件和邮件招募美国的家庭医学或内科专业医生(目标人数=420)。通过基于网络的调查,参与者将被随机分配到一个由三部分组成的“序贯多重分配随机化试验(SMART)案例”中,该案例详细描述了一个涉及AI决策支持工具的假设临床场景。SMART案例设计与SMART设计类似,但适用于调查设计。每个受访者将被随机分配到我们在每个阶段测试的因素的一种可能的案例变体中,这些因素包括临床风险水平、提供的有关AI的信息量以及AI输出的确定性。将向受访者提出有关他们对假设场景的假设决策的问题。

结果

该研究目前正在进行中,预计数据收集将于2024年完成。

结论

基于网络的案例研究将提供有关临床风险、AI工具提供的信息量以及AI结果等背景因素如何影响医生对基于AI在一线医疗保健环境中的新兴应用的假设场景的反应的信息。由于上述两个特征,我们新提出的“SMART案例”设计提供了广泛使用的传统案例设计所没有的几个优点。这些优点是:(1)在考虑先前结果和其他背景因素的情况下,针对理解因素对决策结果影响的分析的有效性提高;(2)各小组的样本量均衡。本研究将在此背景下更好地理解医生的决策。

国际注册报告标识符(IRRID):DERR1-10.2196/54787。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/682e/11027055/cbeb479497fc/resprot_v13i1e54787_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索