Flotho Matthias, Yang Andrew, Kern Fabian, Graf Simon, Diks Ian Ferenc, Shin Heather, Zera Kristy A, Berdnik Daniela, Agam Maayan R, Channappa Divya, Shi Sophia M, Belnap Malia Alexandra, Simmons Epiphani C, Bradshaw Karen, Grandke Friederike, Bennett David A, Buckwalter Marion, Keller Andreas, Wyss-Coray Tony
Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
bioRxiv. 2025 Aug 29:2025.08.25.672093. doi: 10.1101/2025.08.25.672093.
The neurovascular unit is critical for brain health, and its dysfunction has been linked to Alzheimer's disease (AD). However, a cell-type-resolved understanding of how diverse vascular cells become dysfunctional and contribute to disease has been missing. Here, we applied Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to build a comprehensive transcriptomic atlas from 101 individuals along AD progression. Our analysis of over 842,646 parenchymal and vascular nuclei reveals that vascular dysfunction in AD is driven by transcriptional changes rather than shifts in cell proportions, with brain endothelial cells (BECs) and smooth muscle cells (SMCs) most affected. Strikingly, these molecular signatures emerge early at the mild cognitive impairment (MCI) stage, implicating vascular dysfunction early in AD pathogenesis. Stratifying by pathology reveals distinct vascular responses to β-amyloid and tau: β-amyloid burden primarily perturbs BECs and SMCs, while tau pathology predominantly impacts glial cells. We identify dysregulated angiopoietin signaling across multiple vascular cell types as a key axis, with antagonistic ANGPT2 in vascular cells and ANGPT1 in astrocytes becoming progressively dysregulated with AD. Together, this work provides a foundational resource that reveals early and pathology-specific pathways of vascular dysfunction in AD.
神经血管单元对大脑健康至关重要,其功能障碍与阿尔茨海默病(AD)有关。然而,对于不同血管细胞如何功能失调并导致疾病,尚未有细胞类型解析层面的认识。在此,我们应用血管分离与细胞核提取测序技术(VINE-seq),沿着AD病程,从101名个体构建了一个全面的转录组图谱。我们对超过842,646个实质和血管细胞核的分析表明,AD中的血管功能障碍是由转录变化而非细胞比例变化驱动的,其中脑内皮细胞(BECs)和平滑肌细胞(SMCs)受影响最大。引人注目的是,这些分子特征在轻度认知障碍(MCI)阶段就已出现,提示血管功能障碍在AD发病机制中出现较早。按病理学分层显示,血管对β-淀粉样蛋白和tau有不同反应:β-淀粉样蛋白负荷主要扰乱BECs和SMCs,而tau病理学主要影响神经胶质细胞。我们确定多种血管细胞类型中失调的血管生成素信号是一个关键轴,随着AD进展,血管细胞中的拮抗血管生成素2(ANGPT2)和星形胶质细胞中的血管生成素1(ANGPT1)逐渐失调。总之,这项工作提供了一个基础资源,揭示了AD中血管功能障碍的早期和病理学特异性途径。