Paulhus Kelsey, Si Man, Trosclair Krystle, Aughenbaugh Ellen, Parkinson Maxine, Gautier-Hall Nicole M, Watts Megan, Kizek Frederica, Bhuiyan Md Shenuarin, Dominic Paari, Hamilton Kathryn A, Glasscock Edward
Department of Biological Sciences, Southern Methodist University, Dallas, TX.
Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA.
bioRxiv. 2025 Aug 28:2025.08.25.671830. doi: 10.1101/2025.08.25.671830.
The leading cause of epilepsy-related mortality is sudden unexpected death in epilepsy (SUDEP), resulting from seizure-induced cardiorespiratory arrest by mechanisms that remain unresolved. Mutations in ion channel genes expressed in both brain and heart represent SUDEP risk factors because they can disrupt neural and cardiac rhythms, providing a unified explanation for seizures and lethal arrhythmias. However, the relative contributions of brain-driven mechanisms, heart-intrinsic processes, and seizures to cardiac dysfunction in epilepsy remain unclear. Here, we investigated the heart-specific role of the gene, which encodes Kv1.1 voltage-gated potassium channel α-subunits expressed in both neurons and cardiomyocytes, where they shape action potential firing and influence seizure and arrhythmia susceptibility. We generated cardiac-specific conditional knockout (cKO) mice lacking Kv1.1 selectively in cardiomyocytes and assessed their cardiac function using and electrophysiology. Cardiac Kv1.1 deficiency prolonged action potentials in atrial, but not ventricular, cardiomyocytes, demonstrating a direct role for Kv1.1 in atrial repolarization. Despite these cellular effects, cKOs exhibited normal lifespans, electrocardiographic features, heart rate variability, pacing-induced arrhythmia susceptibility, contractility, seizure susceptibility, and seizure-induced mortality. Thus, while loss of cardiac Kv1.1 was sufficient to impair atrial repolarization, it did not reproduce the broader cardiac abnormalities seen in global knockouts. Given the higher mortality rates of global compared with neural-specific knockouts in our previous studies, cardiac Kv1.1 deficiency, while not lethal alone, may increase vulnerability to seizure-related death when combined with neural deficiency, consistent with a brain-heart dyssynergy that lowers the threshold for fatal events.
癫痫相关死亡的主要原因是癫痫猝死(SUDEP),其由癫痫发作诱发的心肺骤停导致,而具体机制仍未明确。在大脑和心脏中均有表达的离子通道基因突变是SUDEP的风险因素,因为它们会扰乱神经和心脏节律,为癫痫发作和致命性心律失常提供了统一的解释。然而,大脑驱动机制、心脏内在过程以及癫痫发作对癫痫患者心脏功能障碍的相对贡献仍不清楚。在此,我们研究了 基因在心脏中的特定作用,该基因编码Kv1.1电压门控钾通道α亚基,在神经元和心肌细胞中均有表达,它们塑造动作电位发放并影响癫痫发作和心律失常易感性。我们构建了在心肌细胞中选择性缺乏Kv1.1的心脏特异性条件性敲除(cKO)小鼠,并使用 和 电生理学方法评估其心脏功能。心脏Kv1.1缺乏延长了心房而非心室心肌细胞的动作电位,表明Kv1.1在心房复极化中具有直接作用。尽管有这些细胞效应,cKO小鼠的寿命、心电图特征、心率变异性、起搏诱发的心律失常易感性、收缩性、癫痫发作易感性以及癫痫发作诱导的死亡率均正常。因此,虽然心脏Kv1.1缺失足以损害心房复极化,但它并未重现全局 敲除小鼠中出现的更广泛的心脏异常。鉴于在我们之前的研究中,全局敲除小鼠的死亡率高于神经特异性敲除小鼠,心脏Kv1.1缺乏虽然单独并不致命,但与神经缺陷相结合时可能会增加癫痫相关死亡的易感性,这与降低致命事件阈值的脑心协同失调一致。