Clark Brian C, Manini Todd M, Simon Janet E, Clark Leatha A, Lyssikatos Charalampos, Warden Stuart J
Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University.
Department of Biomedical Sciences, Ohio University.
medRxiv. 2025 Aug 29:2025.08.28.25334655. doi: 10.1101/2025.08.28.25334655.
Dual-energy x-ray absorptiometry (DXA)-derived areal bone mineral density (BMD) remains the clinical standard for assessing osteoporosis risk, yet it fails to identify over 75% of individuals who sustain fragility fractures. Direct in vivo mechanical assessment of cortical bone strength may address this diagnostic gap by capturing structural and material properties that govern whole-bone strength but are not reflected by BMD. We conducted a multicenter case-control study with cross-sectional assessment to compare ulna flexural rigidity, a biomechanical property correlated with whole-bone strength (R ≈ 0.99), estimated using Cortical Bone Mechanics Technology (CBMT), with DXA-derived BMD for discriminating prior fragility fractures in postmenopausal women. A total of 372 women aged 50-80 years (109 with low-trauma fractures, 263 matched controls) were enrolled across four U.S. sites. Ulna flexural rigidity was assessed by dynamic vibrational analysis; BMD was measured at the spine, hip, and 1/3 radius. Women with prior fractures had significantly lower flexural rigidity than controls (absolute: 20.0 vs. 24.8 N·m; 21% lower; weight-normalized: 0.29 vs. 0.36 N·m/kg; 22% lower; both P < .001). CBMT demonstrated strong discriminatory accuracy (AUC = 0.80 normalized; 0.76 absolute) versus poor DXA performance (AUC ≤ 0.54). In multivariable models including CBMT, DXA-derived BMD, age, and BMI, CBMT remained independently associated with fracture status, whereas BMD did not. Subgroup analyses showed CBMT retained strong performance in treatment-naïve women (AUC = 0.85) and in those with non-osteoporotic BMD (AUC = 0.80). Exploratory fracture-site analyses demonstrated that ulna EI discriminated upper and lower extremity fractures, including hip, whereas DXA-derived BMD generally showed poor or nonsignificant discrimination. These findings demonstrate that in vivo mechanical assessment of cortical bone rigidity provides clinically relevant information beyond areal BMD, including women not classified high risk. Direct in vivo assessment of cortical bone rigidity may enhance fracture risk stratification and enhance osteoporosis screening.
双能X线吸收法(DXA)得出的面积骨密度(BMD)仍是评估骨质疏松症风险的临床标准,但它无法识别超过75%发生脆性骨折的个体。对皮质骨强度进行直接的体内力学评估,通过获取决定全骨强度但未被BMD反映的结构和材料特性,可能会填补这一诊断空白。我们进行了一项多中心病例对照研究,并进行横断面评估,以比较使用皮质骨力学技术(CBMT)估计的尺骨弯曲刚度(一种与全骨强度相关的生物力学特性,R≈0.99)与DXA得出的BMD,用于鉴别绝经后女性既往的脆性骨折。在美国的四个地点共招募了372名50 - 80岁的女性(109名有低创伤骨折,263名匹配对照)。通过动态振动分析评估尺骨弯曲刚度;在脊柱、髋部和桡骨1/3处测量BMD。有既往骨折的女性的弯曲刚度显著低于对照组(绝对值:20.0对24.8 N·m;低21%;体重标准化:0.29对0.36 N·m/kg;低22%;两者P < 0.001)。与DXA较差的表现(AUC≤0.54)相比,CBMT显示出很强的鉴别准确性(AUC = 0.80标准化;0.76绝对值)。在包括CBMT、DXA得出的BMD、年龄和BMI的多变量模型中,CBMT仍与骨折状态独立相关,而BMD则不然。亚组分析显示,CBMT在未接受治疗的女性(AUC = 0.85)和骨密度非骨质疏松的女性(AUC = 0.80)中保持强大的性能。探索性骨折部位分析表明,尺骨EI可鉴别上肢和下肢骨折,包括髋部骨折,而DXA得出的BMD通常显示出较差或无显著鉴别能力。这些发现表明,对皮质骨刚度进行体内力学评估可提供超出面积骨密度的临床相关信息,包括未被归类为高风险的女性。对皮质骨刚度进行直接的体内评估可能会增强骨折风险分层并加强骨质疏松症筛查。