Cole Eric R, Opri Enrico, Borgheai Seyyed Bahram, Han Yuji, Isbaine Faical, Boulis Nicholas, Willie Jon T, AuYong Nicholas, Gross Robert E, Miocinovic Svjetlana
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
medRxiv. 2025 Aug 28:2025.08.26.25334489. doi: 10.1101/2025.08.26.25334489.
Effective deep brain stimulation (DBS) treatment for Parkinson's disease requires careful adjustment of stimulation parameters and targeting to avoid motor side effects caused by activation of the internal capsule. Currently, patients must self-report side effects during device programming and implantation surgery - a challenging and subjective process that could lead to suboptimal therapy or exacerbate the time needed to optimize treatment. Motor evoked potentials (mEP), the use of electromyography to record DBS-induced muscle activation, offer a promising biomarker for objective motor side effect detection.
Here, we present an automated algorithmic procedure for mEP detection and quantification.
First, we design and evaluate a series of signal processing techniques to accurately detect mEP while mitigating the influence of stimulation artifacts and noise, then demonstrate a strategy for integrating multi-channel EMG responses into a single side effect biomarker (the mEP score). Next, we use data from a large patient cohort of intraoperative recordings (N = 54 STN leads) to quantify several physiological features of mEP, including their response frequency, latency, amplitude, and waveform similarity properties. Last, we show that the mEP score responds to DBS amplitude and contact configuration parameters in a manner that is consistent with expected STN-capsular anatomy.
The results of this study inform an end-to-end approach for side effect biomarker measurement that could aid the precision and efficiency of DBS programming and surgical targeting.
帕金森病的有效深部脑刺激(DBS)治疗需要仔细调整刺激参数并确定靶点,以避免因内囊激活引起的运动副作用。目前,患者必须在设备编程和植入手术期间自行报告副作用——这是一个具有挑战性的主观过程,可能导致治疗效果欠佳或延长优化治疗所需的时间。运动诱发电位(mEP),即利用肌电图记录DBS诱发的肌肉激活情况,为客观检测运动副作用提供了一种有前景的生物标志物。
在此,我们提出一种用于mEP检测和量化的自动化算法程序。
首先,我们设计并评估了一系列信号处理技术,以在减轻刺激伪迹和噪声影响的同时准确检测mEP,然后展示了一种将多通道肌电图反应整合为单个副作用生物标志物(mEP评分)的策略。接下来,我们使用来自大量术中记录患者队列(N = 54个丘脑底核电极)的数据来量化mEP的几种生理特征,包括其反应频率、潜伏期、振幅和波形相似性特征。最后,我们表明mEP评分对DBS振幅和触点配置参数的反应方式与预期的丘脑底核 - 内囊解剖结构一致。
本研究结果为副作用生物标志物测量提供了一种端到端的方法,有助于提高DBS编程和手术靶点定位的精度和效率。