Suppr超能文献

采用安全约束的自动深部脑刺激编程治疗帕金森病和特发性震颤患者的震颤。

Automated deep brain stimulation programming with safety constraints for tremor suppression in patients with Parkinson's disease and essential tremor.

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America.

Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States of America.

出版信息

J Neural Eng. 2022 Aug 18;19(4). doi: 10.1088/1741-2552/ac86a2.

Abstract

Deep brain stimulation (DBS) programming for movement disorders requires systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while avoiding side effects. DBS programming can be a time-consuming process and requires clinical expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe and evaluate an automated, closed-loop, and patient-specific framework for DBS programming that measures tremor using a smartwatch and automatically changes DBS parameters based on the recommendations from a closed-loop optimization algorithm thus eliminating the need for an expert clinician.Bayesian optimization which is a sample-efficient global optimization method was used as the core of this DBS programming framework to adaptively learn each patient's response to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially to define a maximum safe amplitude, but we also implemented 'safe Bayesian optimization' to automatically discover tolerable exploration boundaries.We tested the system in 15 patients (nine with Parkinson's disease and six with essential tremor). Tremor suppression at best automated settings was statistically comparable to previously established clinical settings. The optimization algorithm converged after testing15.1±0.7settings when maximum safe exploration boundaries were predefined, and17.7±4.9when the algorithm itself determined safe exploration boundaries.We demonstrate that fully automated DBS programming framework for treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by expert clinicians.

摘要

深部脑刺激 (DBS) 编程治疗运动障碍需要系统地微调刺激参数,以改善震颤和其他症状,同时避免副作用。DBS 编程可能是一个耗时的过程,需要临床专业知识来评估 DBS 的反应,以优化每个患者的治疗。在这项研究中,我们描述并评估了一种用于 DBS 编程的自动化、闭环和患者特异性框架,该框架使用智能手表测量震颤,并根据闭环优化算法的建议自动更改 DBS 参数,从而无需专家临床医生。贝叶斯优化是一种样本高效的全局优化方法,被用作该 DBS 编程框架的核心,以自适应地学习每个患者对 DBS 的反应,并建议下一个最佳设置进行评估。最初,临床医生的输入用于定义最大安全幅度,但我们还实施了“安全贝叶斯优化”,以自动发现可耐受的探索边界。我们在 15 名患者(9 名帕金森病患者和 6 名原发性震颤患者)中测试了该系统。在最佳自动设置下的震颤抑制在统计学上与先前建立的临床设置相当。当最大安全探索边界预先定义时,优化算法在测试 15.1±0.7 个设置后收敛,当算法本身确定安全探索边界时,收敛 17.7±4.9 个设置。我们证明,用于治疗震颤的完全自动化 DBS 编程框架既高效又安全,同时提供与专家临床医生相当的结果。

相似文献

2
Automated Deep Brain Stimulation Programming for Tremor.自动深部脑刺激程控治疗震颤。
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1618-1625. doi: 10.1109/TNSRE.2018.2852222. Epub 2018 Jul 2.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验