文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

老年人中加速度计测量的身体活动量与睡眠时间之间的关联:一项横断面可解释机器学习分析。

Association between accelerometer-measured physical activity volume and sleep duration in older adults: a cross-sectional interpretable machine learning analysis.

作者信息

Cai XiaoTao, Xian Yi, Zhou YuXin, Liu TongYi, Zhang Xinyue, Chen Qing

机构信息

Institute of Physical Education, Sichuan University, Chengdu, China.

School of Physical Education and Spout Science, Fujian Normal University, Fuzhou, China.

出版信息

Front Public Health. 2025 Aug 20;13:1635020. doi: 10.3389/fpubh.2025.1635020. eCollection 2025.


DOI:10.3389/fpubh.2025.1635020
PMID:40910062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12404940/
Abstract

OBJECTIVE: This study aimed to examine the relationship between physical activity volume and sleep duration in older adults, using objective monitoring data to investigate their non-linear association and threshold effects, thereby providing references for developing exercise programs to improve sleep duration. METHODS: The study used two consecutive waves of NHANES cross-sectional data (2011-2014) as the derivation cohort and NHANES 2005-2006 data as the validation cohort. Analysis of the derivation cohort included weighted univariate analysis, weighted multivariate logistic regression, and interpretable machine learning analysis. The machine learning interpretability process involved dividing a 20% internal validation test set, using the grid search method and five-fold cross-validation to construct RF, GBDT, XGBoost, and LightGBM models, as well as a two-layer stacked ensemble model for model comparison, with external validation of the optimal model's performance. The final model was used for SHAP interpretability analysis. RESULTS: Logistic regression results showed a positive correlation between physical activity volume and the probability of good sleep duration. Among the constructed models, GBDT performed best, with internal validation AUC = 0.859 (0.821-0.897,  < 0.001) and external validation AUC = 0.707 (0.690-0.730,  < 0.001). SHAP analysis results indicated that physical activity volume was particularly important for sleep duration, with the association direction consistent with logistic regression results, demonstrating strong robustness of the positive correlation. The association showed non-linear relationships and threshold effects: the marginal effects of physical activity volume changes were relatively low below 7,000 MIMS and above 15,000 MIMS, with 11461.51 MIMS being the key threshold point for predicting whether older adults would have good sleep duration. CONCLUSION: In studies targeting sleep duration improvement in older adults, physical activity may be considered as a non-invasive intervention. When designing such programs, special attention should be given to critical thresholds and zone effects of physical activity volume. We recommend that older adults maintain a daily activity level of at least 12,000 MIMS, with 15,000 MIMS representing the optimal standard. However, potential risks associated with excessive exercise should be noted.

摘要

目的:本研究旨在探讨老年人身体活动量与睡眠时间之间的关系,利用客观监测数据研究它们的非线性关联和阈值效应,从而为制定改善睡眠时间的运动计划提供参考。 方法:本研究使用连续两波的美国国家健康与营养检查调查(NHANES)横断面数据(2011 - 2014年)作为推导队列,以及NHANES 2005 - 2006年数据作为验证队列。对推导队列的分析包括加权单变量分析、加权多变量逻辑回归和可解释机器学习分析。机器学习可解释性过程包括划分20%的内部验证测试集,使用网格搜索方法和五折交叉验证来构建随机森林(RF)、梯度提升决策树(GBDT)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)模型,以及用于模型比较的两层堆叠集成模型,并对最优模型的性能进行外部验证。最终模型用于SHAP可解释性分析。 结果:逻辑回归结果显示身体活动量与良好睡眠时间概率之间呈正相关。在所构建的模型中,GBDT表现最佳,内部验证AUC = 0.859(0.821 - 0.897,<0.001),外部验证AUC = 0.707(0.690 - 0.730,<0.001)。SHAP分析结果表明身体活动量对睡眠时间尤为重要,其关联方向与逻辑回归结果一致,表明正相关具有很强的稳健性。该关联呈现非线性关系和阈值效应:身体活动量变化的边际效应在低于7000代谢当量(MIMS)和高于15000 MIMS时相对较低,11461.51 MIMS是预测老年人是否有良好睡眠时间的关键阈值点。 结论:在旨在改善老年人睡眠时间的研究中,身体活动可被视为一种非侵入性干预措施。在设计此类计划时,应特别关注身体活动量的关键阈值和区间效应。我们建议老年人保持每日至少12000 MIMS的活动水平,15000 MIMS代表最佳标准。然而,应注意过度运动带来的潜在风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/85639103ebe9/fpubh-13-1635020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/ec33bc39bfa1/fpubh-13-1635020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/fa19309dcdc9/fpubh-13-1635020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/5666346e5db5/fpubh-13-1635020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/4ae448aa5c4e/fpubh-13-1635020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/85639103ebe9/fpubh-13-1635020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/ec33bc39bfa1/fpubh-13-1635020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/fa19309dcdc9/fpubh-13-1635020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/5666346e5db5/fpubh-13-1635020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/4ae448aa5c4e/fpubh-13-1635020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/483f/12404940/85639103ebe9/fpubh-13-1635020-g005.jpg

相似文献

[1]
Association between accelerometer-measured physical activity volume and sleep duration in older adults: a cross-sectional interpretable machine learning analysis.

Front Public Health. 2025-8-20

[2]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[5]
Development of Machine Learning-based Algorithms to Predict the 2- and 5-year Risk of TKA After Tibial Plateau Fracture Treatment.

Clin Orthop Relat Res. 2025-3-12

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[9]
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.

Health Technol Assess. 2008-6

[10]
Development of an interpretable machine learning model for frailty risk prediction in older adult care institutions: a mixed-methods, cross-sectional study in China.

BMJ Open. 2025-7-5

本文引用的文献

[1]
From physical activity patterns to cognitive status: development and validation of novel digital biomarkers for cognitive assessment in older adults.

Int J Behav Nutr Phys Act. 2025-1-20

[2]
Physical Activity and Sleep in Adults and Older Adults in Southern Brazil.

Int J Environ Res Public Health. 2023-1-13

[3]
Association of physical activity, sedentary behaviour, and daylight exposure with sleep in an ageing population: findings from the Whitehall accelerometer sub-study.

Int J Behav Nutr Phys Act. 2022-12-9

[4]
Comparison of Accelerometry-Based Measures of Physical Activity: Retrospective Observational Data Analysis Study.

JMIR Mhealth Uhealth. 2022-7-22

[5]
Association Between Psoriasis and Nonalcoholic Fatty Liver Disease Among Outpatient US Adults.

JAMA Dermatol. 2022-7-1

[6]
A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors.

Future Med Chem. 2022-5

[7]
Sleep duration and health outcomes: an umbrella review.

Sleep Breath. 2022-9

[8]
International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines.

J Nutr Health Aging. 2021

[9]
An Open-Source Monitor-Independent Movement Summary for Accelerometer Data Processing.

J Meas Phys Behav. 2019-12

[10]
Role of physical activity and fitness on sleep in sedentary middle-aged adults: the FIT-AGEING study.

Sci Rep. 2021-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索