Konstantinidou Markella, Virta Johanna M, Arkin Michelle R
Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, United States.
Acc Chem Res. 2025 Sep 16;58(18):2840-2851. doi: 10.1021/acs.accounts.5c00441. Epub 2025 Sep 5.
ConspectusProtein-protein interactions (PPIs) play a key role in homeostasis and are often dysregulated in disease. PPIs were traditionally considered "undruggable" due to their flat surfaces and disordered domains. Recently, the identification of PPI stabilizers, or molecular glues (MGs), compounds that bind cooperatively to PPI interfaces, has provided a new direction for the field. MGs offer exciting opportunities for chemical biology and drug discovery, particularly for intrinsically disordered domains. To date, many of the fascinating MGs were discovered serendipitously, and their molecular glue mechanism of action was understood retrospectively. Our collaborative contribution has been the development of systematic, rational approaches for the identification, optimization, and validation of MGs.This Account focuses on the modulation of the native PPIs between the hub protein 14-3-3 and its client proteins. 14-3-3 recognizes specific phospho-serine/threonine motifs on disordered domains of hundreds of clients and, depending on the phospho site, can activate or inhibit signaling pathways. Until recently, only the natural product fusicoccin A and its analogs were known to bind at the structured 14-3-3/client interfaces and modulate cellular pathways. The complexity of the natural products significantly hindered chemical biology approaches and did not provide sufficient insight into the systematic, selective targeting of the client of interest.Inspired by the natural products, we used fragment-based screens to identify new chemical matter for 14-3-3/client PPIs. Using disulfide-tethering technology, we targeted either engineered cysteines on 14-3-3 or the native cysteine (C38) on 14-3-3σ. Five clients (ERα, C-RAF, FOXO1, USP8, and SOS1), representing varying sequences, binding modes, and physiological roles, were included in the initial screens. We identified both selective and nonselective fragments suitable for medicinal chemistry optimization.Starting from a fragment that stabilized two 14-3-3 clients, estrogen receptor α (ERα) and C-RAF, we developed cell-active MGs selective for ERα. ERα is a well-validated target in breast cancer, and 14-3-3 is a negative regulator that blocks ERα transcriptional activity. We used structure-guided design to optimize ligand-protein interactions at the composite PPI surface. The molecular glues were validated in biophysical assays, including intact mass spectrometry (MS) and fluorescence anisotropy (FA) assays, allowing the quantification of binding, kinetics, and cooperativity.We explored alternative strategies for the identification and optimization of MGs. For the 14-3-3/ERα complex, we demonstrated fragment linking to generate non-covalent stabilizers and a scaffold-hopping approach using multicomponent reaction chemistry. For the 14-3-3/C-RAF complex, we used a fragment-merging approach to selectively stabilize the inhibited state of C-RAF. Binding of 14-3-3 to the inhibitory phospho-S259 site prevents C-RAF dimerization and activation, offering an alternative mechanism to block the MAPK pathway. Finally, we validated compounds in cells using pathway-specific assays and a series of proximity-based NanoBRET assays to measure cellular PPIs.These approaches led to first-in-class MGs for the 14-3-3/ERα and 14-3-3/C-RAF targets. Overall, we have developed a systematic platform for the identification of molecular glues for native PPIs applicable to the broad 14-3-3 interactome and beyond.
综述
蛋白质 - 蛋白质相互作用(PPI)在体内稳态中起着关键作用,并且在疾病中常常失调。由于其表面平坦和结构域无序,PPI传统上被认为是“不可成药的”。最近,PPI稳定剂或分子胶水(MG)的发现,即能协同结合到PPI界面的化合物,为该领域提供了新的方向。MG为化学生物学和药物发现提供了令人兴奋的机会,特别是对于内在无序的结构域。迄今为止,许多引人入胜的MG是偶然发现的,它们的分子胶水作用机制是事后才被理解的。我们的合作贡献在于开发了用于MG鉴定、优化和验证的系统、合理的方法。
本综述重点关注枢纽蛋白14 - 3 - 3与其客户蛋白之间天然PPI的调控。14 - 3 - 3识别数百种客户蛋白无序结构域上的特定磷酸化丝氨酸/苏氨酸基序,并且根据磷酸化位点,可以激活或抑制信号通路。直到最近,只有天然产物藤霉素A及其类似物已知在结构化的14 - 3 - 3/客户蛋白界面结合并调节细胞通路。天然产物的复杂性严重阻碍了化学生物学方法,并且没有提供对感兴趣客户蛋白的系统、选择性靶向的足够见解。
受天然产物的启发,我们使用基于片段的筛选来鉴定用于14 - 3 - 3/客户蛋白PPI的新化学物质。使用二硫键连接技术,我们靶向14 - 3 - 3上工程化的半胱氨酸或14 - 3 - 3σ上的天然半胱氨酸(C38)。初始筛选中包括五个客户蛋白(雌激素受体α(ERα)、C - RAF、FOXO1、USP8和SOS1),它们代表不同的序列、结合模式和生理作用。我们鉴定出了适合药物化学优化的选择性和非选择性片段。
从一个能稳定两个14 - 3 - 3客户蛋白,即雌激素受体α(ERα)和C - RAF的片段开始,我们开发了对ERα具有选择性的细胞活性MG。ERα是乳腺癌中一个经过充分验证的靶点,而14 - 3 - 3是一个负调节因子,可阻断ERα的转录活性。我们使用结构导向设计来优化复合PPI表面的配体 - 蛋白质相互作用。这些分子胶水在生物物理测定中得到验证,包括完整质谱(MS)和荧光各向异性(FA)测定,从而能够对结合、动力学和协同性进行定量。
我们探索了鉴定和优化MG的替代策略。对于14 - 3 - 3/ERα复合物,我们展示了通过片段连接生成非共价稳定剂以及使用多组分反应化学的骨架跳跃方法。对于14 - 3 - 3/C - RAF复合物,我们使用片段合并方法选择性地稳定C - RAF的抑制状态。14 - 3 - 3与抑制性磷酸化S259位点的结合可防止C - RAF二聚化和激活,这提供了一种阻断丝裂原活化蛋白激酶(MAPK)途径的替代机制。最后,我们使用途径特异性测定和一系列基于邻近性的纳米生物发光共振能量转移(NanoBRET)测定在细胞中验证化合物,以测量细胞内的PPI。
这些方法产生了针对14 - 3 - 3/ERα和14 - 3 - 3/C - RAF靶点的同类首创MG。总体而言,我们开发了一个系统平台,用于鉴定适用于广泛的14 - 3 - 3相互作用组及其他体系的天然PPI的分子胶水。