Prajapati Virendra, Tomar Yashika, Singhvi Gautam, Ray Debes, Aswal Vinod, Kuperkar Ketan, Bahadur Pratap
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath Dumas Road, Keval Chowk, Surat-395007, Gujarat, India.
Industrial research laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS)-Pilani, Pilani campus, Rajasthan-333031, India.
Phys Chem Chem Phys. 2025 Sep 24;27(37):20092-20116. doi: 10.1039/d5cp01291k.
This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus ('). Interestingly, P123 exhibited thermoreversible gelation at 50% w/v, with ' > '' at 25 °C reversing to '' > ' at 50 °C. Other POE-based surfactants retained Newtonian flow behaviour under all tested conditions. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) studies depicted large spherical micelles ( ≈ 13.0 nm at 25 °C) for 5% w/v Soluplus® compared to other POE-based nonionic surfactants, while 5% w/v P123 underwent a morphological transition from spherical to ellipsoidal micelles upon temperature variation. In mixed micellar systems, maintaining a total concentration of 5% w/v displayed synergistic interactions, particularly in Soluplus® : P123 and Soluplus® : Tw-80 combinations, where the cloud point (CP) increased significantly (∼29 °C to ∼80-86 °C). In mixed micellar systems, DLS analysis revealed a transition from bimodal to unimodal distributions with increasing Soluplus® content, indicating micelle integration and restructuring. SANS analysis confirmed an ellipsoidal transition in the Soluplus® : P123 system due to strong hydrophobic-hydrophilic interactions. Moreover, these nanoscale entities were assessed for the solubilization enhancement of a hydrophobic anticancer drug, Quercetin (QCT), using UV-visible (UV-vis) spectroscopy in both single and mixed systems. Soluplus® alone exhibited the highest solubilization (∼31.8 μg mL; ∼79.6-fold) while low to moderate proportions of Soluplus® (≤0.5 weight fraction) led to enhanced QCT solubility due to synergistic effects, with notable improvements observed in Soluplus® : P123 (∼17.1 μg mL; ∼42.8-fold) and Soluplus® : HS15 (∼19.4 μg mL; ∼48.5-fold) systems. The drug release profiles were fitted using various kinetic models, with the Higuchi model providing the best fit ( = 0.9460-0.9874), indicating a diffusion-controlled mechanism in both single and mixed systems.
本研究报告了在水溶液环境中,通过将两亲性接枝共聚物Soluplus®(主要表面活性剂)与其他基于聚氧乙烯(POE)的非离子表面活性剂(如Kolliphor® HS15、Kolliphor® EL、吐温80、TPGS®和普朗尼克® P123)混合,在单一和混合表面活性剂体系中形成纳米级胶束的情况。在广泛的表面活性剂浓度和温度范围内,分析了这些表面活性剂作为单一体系的溶液行为。流变学测量表明,Soluplus®的溶液行为明显不同,在≤20% w/v时表现为低粘度()和类似流体的行为,在≥90% w/v时则处于高粘度状态,此时损耗模量('')超过储能模量(')。有趣的是,P123在50% w/v时表现出热可逆凝胶化,在25°C时' > '',在50°C时则变为'' > '。其他基于POE的表面活性剂在所有测试条件下均保持牛顿流体行为。动态光散射(DLS)和小角中子散射(SANS)研究表明,与其他基于POE的非离子表面活性剂相比,5% w/v的Soluplus®形成了大的球形胶束(25°C时≈13.0 nm),而5% w/v的P123在温度变化时从球形胶束转变为椭圆形胶束。在混合胶束体系中,保持总浓度为5% w/v时表现出协同相互作用,特别是在Soluplus® : P123和Soluplus® : 吐温80组合中,浊点(CP)显著升高(从29°C升高到80 - 86°C)。在混合胶束体系中,DLS分析表明,随着Soluplus®含量的增加,分布从双峰转变为单峰,表明胶束发生了整合和重组。SANS分析证实,由于强烈的疏水 - 亲水相互作用,Soluplus® : P123体系中发生了椭圆形转变。此外,在单一和混合体系中,使用紫外 - 可见(UV - vis)光谱评估了这些纳米级实体对疏水性抗癌药物槲皮素(QCT)的增溶作用。单独的Soluplus®表现出最高的增溶能力(31.8 μg mL;79.6倍),而低至中等比例的Soluplus®(≤0.5重量分数)由于协同效应导致QCT溶解度提高,在Soluplus® : P123(17.1 μg mL;42.8倍)和Soluplus® : HS15(19.4 μg mL;48.5倍)体系中观察到显著改善。使用各种动力学模型对药物释放曲线进行拟合,Higuchi模型拟合效果最佳( = 0.9460 - 0.9874),表明在单一和混合体系中均为扩散控制机制。