Suppr超能文献

基于图卷积网络和毒理基因组学的药物性肝损伤预测

Drug-induced liver injury prediction based on graph convolutional networks and toxicogenomics.

作者信息

Xiao Tong, Liu Ying, Hu Kaimiao, Guo Kaimin, Zhang Mengying, Wang TingTing, Lei Weihua, Wang Wenjia, Zhou Shuiping, Hu Yunhui, Su Ran

机构信息

School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China.

Tianjin Tasly Digital Intelligence Chinese Medicine Technology Co., Ltd., Tianjin, China.

出版信息

PLoS Comput Biol. 2025 Sep 5;21(9):e1013423. doi: 10.1371/journal.pcbi.1013423. eCollection 2025 Sep.

Abstract

Drug-induced liver injury is a leading cause of high attrition rates for both candidate drugs and marketed medications. Previous in silico models may not effectively utilize biological drug property information and often lack robust model validation. In this study, we developed a graph convolutional network embedded with a biological graph learning (BioGL) module-named BioGL-GCN(Biological Graph Learning-Graph Convolutional Network)-for drug-induced liver injury prediction using toxicogenomic profiles. The BioGL module learned the optimal graph representations of gene interactions by utilizing the constructed protein-protein interaction network, which represents initial gene relationships, and gene frequency information obtained from gene enrichment analysis. Finally, the graph convolutional network was used to identify drug hepatotoxicity. Our method pays more attention to gene-gene relationships compared to previous approaches, thereby achieving more accurate predictive performance. We applied BioGL-GCN to predict DILI risk for active components in the integrated traditional Chinese medicine (ITCM) database and validated these predictions through hepatotoxicity experiments using a 3D primary human hepatocyte (PHH) model. The results showed that our model achieved a prediction accuracy of 79%, thus further validating the reliability of the constructed model.

摘要

药物性肝损伤是候选药物和上市药物高损耗率的主要原因。以往的计算机模型可能无法有效利用生物药物特性信息,且往往缺乏可靠的模型验证。在本研究中,我们开发了一种嵌入生物图学习(BioGL)模块的图卷积网络——名为BioGL-GCN(生物图学习-图卷积网络),用于利用毒理基因组学图谱预测药物性肝损伤。BioGL模块通过利用构建的蛋白质-蛋白质相互作用网络(代表初始基因关系)和从基因富集分析中获得的基因频率信息,学习基因相互作用的最佳图表示。最后,使用图卷积网络识别药物肝毒性。与以往方法相比,我们的方法更关注基因-基因关系,从而实现了更准确的预测性能。我们应用BioGL-GCN预测综合中药(ITCM)数据库中活性成分的药物性肝损伤风险,并通过使用三维原代人肝细胞(PHH)模型的肝毒性实验验证了这些预测。结果表明,我们的模型预测准确率达到79%,从而进一步验证了构建模型的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e8/12412982/3ac6ede8256d/pcbi.1013423.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验