Suzuki Haruka, Yaguchi Junko, Tsuyuzaki Koki, Yaguchi Shunsuke
Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
Nat Commun. 2025 Sep 5;16(1):8005. doi: 10.1038/s41467-025-63111-z.
Since Hans Driesch's pioneering work in 1891, it has been known that animal embryos can develop into complete individuals even when divided. However, the developmental processes and molecular mechanisms enabling this self-organization remain poorly understood. In this study, we revisit Driesch's experiments by examining the development of isolated 2-cell stage blastomeres in the sea urchin, Hemicentrotus pulcherrimus. Contrary to intact embryos, these isolated blastomeres initially form a flat, single layer of dividing cells that eventually round up to be a blastula. Live imaging and knockdown experiments reveal that actomyosin activity at the basal side of the cells and septate junctions drives this process. Intriguingly, we observed temporal disorganization of the anterior-posterior (A-P) and dorsal-ventral (D-V) axes, where the original A-P poles come into contact after sphere shape formation. The disrupted A-P axis is subsequently corrected as the embryos employ the Wnt/β-catenin signaling mechanisms assumed to be used in intact embryos to re-establish a normal axis. These findings suggest that axis re-organization through pre-existing developmental mechanisms is essential for the successful regulative development of divided embryos.
自1891年汉斯·德里施的开创性工作以来,人们就知道动物胚胎即使在分裂时也能发育成完整的个体。然而,促成这种自我组织的发育过程和分子机制仍知之甚少。在本研究中,我们通过研究海胆光棘球海胆分离的二细胞期卵裂球的发育过程,重新审视了德里施的实验。与完整胚胎不同,这些分离的卵裂球最初形成一层扁平的、正在分裂的细胞,最终会变圆成为囊胚。实时成像和基因敲除实验表明,细胞基底侧的肌动球蛋白活性和分隔连接驱动了这一过程。有趣的是,我们观察到前后(A-P)轴和背腹(D-V)轴的时间紊乱,其中原始的A-P极在球体形成后相互接触。随后,随着胚胎利用假定在完整胚胎中使用的Wnt/β-连环蛋白信号机制来重新建立正常轴,被破坏的A-P轴得以校正。这些发现表明,通过预先存在的发育机制进行轴的重新组织对于分裂胚胎的成功调节发育至关重要。