Yang Jingbo, Zhang Yuanxi, Liu Zhengjie, Huang Shuang, Huang Xinshuo, Wang Yunuo, Li Mingqiang, Zheng Shantao, Chen Fuqian, Liu Jing, Tao Yu, Wu Tong, Xu Lizhi, Chen Huijiuan, Jiang Lelun, Xie Xi
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
Nat Mater. 2025 Sep 5. doi: 10.1038/s41563-025-02340-5.
Small-scale magnetically actuated catheters capable of remote active navigation have promising applications in minimally invasive surgeries. However, existing fabrication techniques hinder their integration with multimodal sensing components, especially since embedding rigid electronic components within the catheters may diminish their flexibility and controllability. Here we report a magnetically actuated bioelectronic catheter with the in situ multiplexed biosensing of multiple types of metabolite or ion simultaneously. We use four-dimensional multichannel printing to fabricate a flexible multichannel ferromagnetic catheter with a multichannel-sheath structure, comprising six liquid metal microchannels embedded in a polymer matrix for electrical conduction. The catheter can navigate through blood vessels and intestines using magnetically controlled active steering, being used for renal vein or intestines interventional surgeries and in situ multimetabolite sensing on rabbit and porcine models. Overall, the reported magnetically actuated bioelectronic catheter is a promising tool for remotely controlled biosensing and therapies on hard-to-reach lesions during minimally invasive surgery.
能够进行远程主动导航的小型磁驱动导管在微创手术中具有广阔的应用前景。然而,现有的制造技术阻碍了它们与多模态传感组件的集成,特别是因为将刚性电子组件嵌入导管可能会降低其灵活性和可控性。在此,我们报告了一种磁驱动生物电子导管,它能够同时对多种类型的代谢物或离子进行原位多路复用生物传感。我们使用四维多通道打印技术制造了一种具有多通道鞘结构的柔性多通道铁磁导管,该结构包括六个嵌入聚合物基质中用于导电的液态金属微通道。该导管可通过磁控主动转向在血管和肠道中导航,用于肾静脉或肠道介入手术以及在兔和猪模型上进行原位多代谢物传感。总体而言,所报道的磁驱动生物电子导管是一种很有前途的工具,可用于微创手术中对难以触及的病变进行远程控制生物传感和治疗。