Suppr超能文献

使用自然语言处理识别眼科临床记录中的交通需求:回顾性横断面研究。

Identifying Transportation Needs in Ophthalmology Clinic Notes Using Natural Language Processing: Retrospective, Cross-Sectional Study.

作者信息

Wasser Lauren M, Liang Hai-Wei, Li Chenyu, Cassidy Julie, Tallapaneni Pooja, Osterhoudt Hunter, Wang Yanshan, Williams Andrew M

机构信息

Department of Ophthalmology, University of Pittsburgh School of Medicine, 1622 Locust Street, 5th floor, Pittsburgh, PA, 15219, United States, 1 412-642-5382.

Department of Health Information Management, University of Pittsburgh School of Health and Rehabilitation Sciences, Pittsburgh, PA, United States.

出版信息

JMIR Med Inform. 2025 Sep 5;13:e69216. doi: 10.2196/69216.

Abstract

BACKGROUND

Transportation insecurity is a known barrier to accessing eye care and is associated with poorer visual outcomes for patients. However, its mention is seldom captured in structured data fields in electronic health records, limiting efforts to identify and support affected patients. Free-text clinical documentation may more efficiently capture information on transportation-related challenges than structured data.

OBJECTIVE

In this study, we aimed to identify mention of transportation insecurity in free-text ophthalmology clinic notes using natural language processing (NLP).

METHODS

In this retrospective, cross-sectional study, we examined ophthalmology clinic notes of adult patients with an encounter at a tertiary academic eye center from 2016 to 2023. Demographic information and free text from clinical notes were extracted from electronic health records and deidentified for analysis. Free text was used to develop a rule-based NLP algorithm to identify transportation insecurity. The NLP algorithm was trained and validated using a gold-standard expert review, and precision, recall, and F1-scores were used to evaluate the algorithm's performance. Logistic regression evaluated associations between demographics and transportation insecurity.

RESULTS

A total of 1,801,572 clinical notes of 118,518 unique patients were examined, and the NLP algorithm identified 726 (0.6%) patients with transportation insecurity. The algorithm's precision, recall, and F1-score were 0.860, 0.960, and 0.778, respectively, indicating high agreement with the gold-standard expert review. Patients with identified transportation insecurity were more likely to be older (OR 3.01, 95% CI 2.38-3.78 for those aged ≥80 vs 18-60 y) and less likely to identify as Asian (OR 0.04, 95% CI 0-0.18 for Asian patients vs White patients). There was no difference by sex (OR 1.13, 95% CI 0.97-1.31) or between the Black and White races (OR 0.98, 95% CI 0.79-1.22).

CONCLUSIONS

NLP has the potential to identify patients experiencing transportation insecurity from ophthalmology clinic notes, which may help to facilitate referrals to transportation resources.

摘要

背景

交通不便已知是获取眼科护理的障碍,并且与患者较差的视力预后相关。然而,电子健康记录中的结构化数据字段很少提及这一点,限制了识别和支持受影响患者的工作。与结构化数据相比,自由文本临床文档可能更有效地获取与交通相关挑战的信息。

目的

在本研究中,我们旨在使用自然语言处理(NLP)在眼科门诊自由文本记录中识别交通不便的相关表述。

方法

在这项回顾性横断面研究中,我们检查了2016年至2023年在一家三级学术眼科中心就诊的成年患者的眼科门诊记录。从电子健康记录中提取人口统计学信息和临床记录中的自由文本,并进行去识别化分析。使用自由文本开发基于规则的NLP算法以识别交通不便。该NLP算法通过金标准专家评审进行训练和验证,并使用精确率、召回率和F1分数评估算法性能。逻辑回归评估人口统计学与交通不便之间的关联。

结果

共检查了118518名独特患者的1801572份临床记录,NLP算法识别出726名(0.6%)存在交通不便的患者。该算法的精确率、召回率和F1分数分别为0.860、0.960和0.778,表明与金标准专家评审高度一致。被识别出存在交通不便的患者年龄更大的可能性更高(≥80岁患者与18 - 60岁患者相比,比值比[OR]为3.01,95%置信区间[CI]为2.38 - 3.78),而被认定为亚洲人的可能性更低(亚洲患者与白人患者相比,OR为0.04,95% CI为0 - 0.18)。性别(OR为1.13,95% CI为0.97 - 1.31)或黑人和白人种族之间(OR为0.98,95% CI为0.79 - 1.22)没有差异。

结论

NLP有潜力从眼科门诊记录中识别出经历交通不便的患者,这可能有助于促进向交通资源的转诊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验