Suppr超能文献

Cryo-EM Study and In Vivo Chemical Mapping of the Methanosarcina acetivorans Ribosome and Its Dimerization via a Repurposed Enzyme and Translation Factor.

作者信息

Fordjour George N R, Ghosh Anwesha, Ferry James G, Armache Jean-Paul, Bevilacqua Philip C, Murakami Katsuhiko S

机构信息

Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802; Center for Structural Biology, Penn State University, University Park, PA 16802; Center for RNA Molecular Biology, Penn State University, University Park, PA 16802; Center for Eukaryotic Gene Regulation, Penn State University, University Park, PA 16802; Molecular Machines Mechanism and Structure Predoctoral Training Program, Penn State University, University Park, PA 16802.

Center for RNA Molecular Biology, Penn State University, University Park, PA 16802; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

J Biol Chem. 2025 Sep 4:110686. doi: 10.1016/j.jbc.2025.110686.

Abstract

Despite the overall conservation of ribosomes across all domains of life, differences in their 3D architecture, rRNA sequences, ribosomal protein composition, and translation factor requirements reflect lineage-specific adaptations to environmental niches. In the domain Archaea, structural studies have primarily focused on non-methanogenic thermophiles and halophiles, leaving it unclear whether these represent the broader archaeal domain. Here, we report the cryo-electron microscopy (cryo-EM) structure of the ribosome from Methanosarcina acetivorans, a previously unreported high-resolution structure from a model mesophilic methanogenic archaeon. Compared to ribosomes from extremophiles, the M. acetivorans ribosome has a simplified architecture, lacking paralogous duplications and containing a reduced complement of ribosomal proteins. Structures of the large subunit (50S) from cells grown with either methanol or acetate show conserved rRNA folding and protein composition. High-resolution structures of the 50S subunit from the two growth substrates enabled us to investigate structural properties that may influence in vivo dimethyl sulfate (DMS) reactivity, an orthogonal chemical approach used to probe RNA structure. We observed good agreement between in vivo DMS reactivity and ribosome structure. Finally, we identify a previously uncharacterized ribosome dimerization mode involving only 50S subunits and mediated by a heterotetrameric complex of PurH and aEF2-proteins with alternative metabolic and translational roles. This macromolecular assembly, which we term the Methanogen Ribosome Dimerization Factor (MRDF), likely mediates ribosome hibernation, revealing an alternative regulatory mechanism in translation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验