Suppr超能文献

通过奶牛背部形状特征的计算机视觉分析自动检测跛行

Automated detection of lameness in dairy cattle through computer vision analysis of back shape characteristics.

作者信息

Narli S Serhan, Schmidt Hendrik, Firouzabadi Ali, Schönnagel Lukas, Reich Marcel Simon, Reitmaier Sandra

机构信息

Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.

Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.

出版信息

Comput Biol Med. 2025 Oct;197(Pt A):111038. doi: 10.1016/j.compbiomed.2025.111038. Epub 2025 Sep 7.

Abstract

Lameness in dairy cattle is a prevalent issue that significantly impacts both animal welfare and farm productivity. Traditional lameness detection methods often rely on subjective visual assessment, focusing on changes in locomotion and back curvature. However, these methods can lack consistency and accuracy, particularly for early-stage detection. Typically, lameness is classified using the Locomotion Scoring System (LCS), which grades severity based on observable changes in movement and posture. This study presents an objective analysis of cow back shape in a sample of 260 Holstein-Friesian cows to identify specific regions associated with varying levels of lameness. A keypoint detection algorithm was employed to map 12 keypoints along the cow's back, which was divided into three regions: cranial, middle, and caudal. Curvature analysis was performed by angles at each keypoint, enabling the extraction of relevant kinematic features, as back posture can be reliably captured with a single side-view camera and may reflect early signs of lameness. These features were subsequently input into a deep learning model to classify cows based on their locomotion scores. The model achieved a high classification accuracy of 97 % in distinguishing lame from non-lame cows. While the cranial region contributed minimally to lameness detection (η = 0.02), the middle (η = 0.14) and caudal (η = 0.068) regions were critical, especially for identifying more severe cases. These findings suggest that analyzing back shape characteristics, particularly in the middle and caudal regions, provides valuable indicators for detecting lameness severity and may enhance the accuracy of automated lameness assessment in dairy cattle.

摘要

奶牛跛行是一个普遍存在的问题,对动物福利和农场生产力都有重大影响。传统的跛行检测方法通常依赖主观视觉评估,重点关注运动和背部弯曲的变化。然而,这些方法可能缺乏一致性和准确性,尤其是在早期检测方面。通常,跛行使用运动评分系统(LCS)进行分类,该系统根据可观察到的运动和姿势变化对严重程度进行分级。本研究对260头荷斯坦 - 弗里生奶牛的样本进行了牛背部形状的客观分析,以确定与不同程度跛行相关的特定区域。采用关键点检测算法在牛的背部绘制12个关键点,牛背被分为三个区域:头部、中部和尾部。通过每个关键点处的角度进行曲率分析,从而能够提取相关的运动学特征,因为背部姿势可以通过单个侧视摄像头可靠地捕捉到,并且可能反映跛行的早期迹象。随后将这些特征输入到深度学习模型中,根据奶牛的运动评分对其进行分类。该模型在区分跛行奶牛和非跛行奶牛方面达到了97%的高分类准确率。虽然头部区域对跛行检测的贡献最小(η = 0.02),但中部(η = 0.14)和尾部(η = 0.068)区域至关重要,特别是对于识别更严重的病例。这些发现表明,分析背部形状特征,特别是在中部和尾部区域,为检测跛行严重程度提供了有价值的指标,并且可能提高奶牛自动跛行评估的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验