Kiruthiga G, Janarthanan Ashwinth, Mahendhiran P D
Department of Artificial Intelligence and data science, Karpagam College of Engineering, Coimbatore, Tamil Nadu, India.
Department of Computer Applications, National Institute of Technology, Tiruchirappalli, India.
Electromagn Biol Med. 2025 Sep 8:1-16. doi: 10.1080/15368378.2025.2541792.
Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications. A Node-Level Capsule Graph Neural Network (NCGNN) is then used to correctly recognize emotions like calm, happy, sad, and furious based on the features that have been collected. Generally speaking, the NCGNN classifier does not provide optimization techniques for adjusting parameters to ensure precise emotion recognition. Hence, propose to utilize the Piranha Foraging Optimization Algorithm (PFOA) to enhance Node-Level Capsule Graph Neural Network, accurately categorize the emotion level. Then, the proposed NLCGNN-SIER-EEG is excluded in Python and the performance metrics like Recall, Accuracy, Precision, Specificity, F1 score and RoC. In the end, the performance of NLCGNN-SIER-EEG technique provides 19.57%, 24.37% and 34.15% high accuracy, 22.12%, 26.82% and 28.52% higher Precision and 23.26%, 28.17% and 29.43% higher recall while compared with existing like Subject-independent emotion recognition based on EEG data using VMD and deep learning (SIER-EEG-VMD-DL), Emotion recognition system based on two-level ensemble of deep-convolutional neural network models (ERS-TLE-DCNN), and human emotion recognition based on EEG data using principal component analysis and artificial neural networks (EEH-HER-ANN), respectively.
利用振动模式分解和深度学习,通过脑电图(EEG)进行独立于主体的情绪检测成为可能,这得益于包含多种情绪的带标签EEG数据集的稀缺性。从广泛多样的人群中收集涵盖广泛情绪状态的带标签EEG数据具有挑战性且资源密集。因此,在小数据集或有偏差的数据集上训练的模型可能无法很好地推广到未知个体或情绪状态,导致在实际应用中准确性和鲁棒性较低。然后使用节点级胶囊图神经网络(NCGNN)根据收集到的特征正确识别平静、快乐、悲伤和愤怒等情绪。一般来说,NCGNN分类器没有提供用于调整参数以确保精确情绪识别的优化技术。因此,建议利用食人鱼觅食优化算法(PFOA)来增强节点级胶囊图神经网络,准确分类情绪水平。然后,在Python中排除所提出的NLCGNN - SIER - EEG,并计算召回率、准确率、精确率、特异性、F1分数和ROC等性能指标。最后,与现有方法如基于VMD和深度学习的独立于主体的EEG数据情绪识别(SIER - EEG - VMD - DL)、基于深度卷积神经网络模型两级集成的情绪识别系统(ERS - TLE - DCNN)以及基于主成分分析和人工神经网络的基于EEG数据的人类情绪识别(EEH - HER - ANN)相比,NLCGNN - SIER - EEG技术的性能分别提供了高19.57%、24.37%和34.15%的准确率,高22.12%、26.82%和28.52%的精确率以及高23.26%、28.17%和29.43%的召回率。