Suppr超能文献

CuPeR模型:一种用于预测垂体手术后库欣病持续存在和复发的动态在线工具。

The CuPeR model: A dynamic online tool for predicting Cushing's disease persistence and recurrence after pituitary surgery.

作者信息

Sharifi Guive, Paraandavaji Elham, Akbari Dilmaghani Nader, Emami Meybodi Tohid, Mohammadzadeh Ibrahim, Sadeghi Neginalsadat, Vaghari Amirali, Niroomand Behnaz, Tavangar Seyed Mohammad, Mohajeri Tehrani Mohammad Reza, Davoudi Zahra, Mirsalehi Marjan, Mousavinejad Seyed Ali, Taghizadeh-Hesary Farzad

机构信息

Department of Neurosurgery, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Skull Base Research Center, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

J Clin Transl Endocrinol. 2025 Aug 27;41:100417. doi: 10.1016/j.jcte.2025.100417. eCollection 2025 Sep.

Abstract

OBJECTIVE

Predicting postoperative persistence and recurrence of Cushing's disease (CD) remains a clinical challenge, with no universally reliable models available. This study introduces the CuPeR model, an online dynamic nomogram developed to address these gaps by predicting postoperative outcomes in patients with CD undergoing pituitary surgery.

METHODS

A retrospective cohort of 211 patients treated for CD between 2010 and 2024 was analyzed. Key patient and tumor characteristics, imaging findings, and treatment details were evaluated. Multivariate logistic regression identified independent predictors of postoperative persistence or recurrence of CD (PoRP-CD), which were then incorporated into the CuPeR model using stepwise selection based on Akaike Information Criterion. Internal validation was performed using a testing dataset, and a user-friendly online nomogram was developed to facilitate immediate, patient-specific risk estimation in clinical practice.

RESULTS

The final predictive model identified four key factors: symptom duration, MRI Hardy's grade, tumor site, and prior pituitary surgery. Longer symptom duration and a history of prior surgery significantly increased the risk of recurrence, while bilateral tumor location reduced this risk. The model demonstrated an area under the receiver operating characteristic curve (AUC-ROC) of 0.70, with 83% accuracy, specificity of 96%, and sensitivity of 33%.

CONCLUSIONS

The CuPeR model may offer a practical tool for predicting PoRP-CD, enhancing preoperative decision-making by providing personalized risk assessments.

摘要

目的

预测库欣病(CD)术后的持续存在和复发仍然是一项临床挑战,目前尚无普遍可靠的模型。本研究引入了CuPeR模型,这是一种在线动态列线图,旨在通过预测接受垂体手术的CD患者的术后结果来填补这些空白。

方法

对2010年至2024年间接受CD治疗的211例患者的回顾性队列进行分析。评估关键的患者和肿瘤特征、影像学表现及治疗细节。多因素逻辑回归确定了CD术后持续存在或复发(PoRP-CD)的独立预测因素,然后根据赤池信息准则采用逐步选择法将这些因素纳入CuPeR模型。使用测试数据集进行内部验证,并开发了一个用户友好的在线列线图,以便在临床实践中进行即时的、针对患者的风险评估。

结果

最终的预测模型确定了四个关键因素:症状持续时间、MRI哈代分级、肿瘤部位和既往垂体手术史。症状持续时间较长和既往手术史显著增加复发风险,而双侧肿瘤位置则降低了这种风险。该模型的受试者工作特征曲线下面积(AUC-ROC)为0.70,准确率为83%,特异性为96%,敏感性为33%。

结论

CuPeR模型可能为预测PoRP-CD提供一种实用工具,通过提供个性化风险评估来加强术前决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5517/12410461/533390da028e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验