Suppr超能文献

DeepHVI:一种使用蛋白质语言模型预测人-病毒蛋白质-蛋白质相互作用的多模态深度学习框架。

DeepHVI: A multimodal deep learning framework for predicting human-virus protein-protein interactions using protein language models.

作者信息

Wang Xindi, Luo Junyu, Cai Xiyang, Liu Ruibin, Li Yixue, Hon Chitin

机构信息

Faculty of Innovation Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China.

Institute of Systems Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China.

出版信息

Biosaf Health. 2025 Jul 11;7(4):257-266. doi: 10.1016/j.bsheal.2025.07.005. eCollection 2025 Aug.

Abstract

Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners. By leveraging protein language models and multimodal fusion, the framework demonstrates improved accuracy in identifying biologically relevant interactions. For empirical validation, we applied this method to predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-human interactions, identifying candidate proteins absent from training data, several of which were corroborated by independent studies. These predictions offer critical insights into potential therapeutic targets, facilitating the design of antiviral drugs and vaccines. By enabling rapid, cost-effective discovery pipelines, our study contributes to pandemic preparedness and public health interventions, underscoring its value in combating emerging infectious diseases.

摘要

了解人类与病毒的蛋白质-蛋白质相互作用对于研究驱动病毒感染、免疫逃逸和传播的分子机制至关重要,从而为公共卫生策略提供依据。在此,我们引入了一种新颖的多模态深度学习框架,该框架整合了高可信度的实验数据集,以系统地预测人类和病毒蛋白质之间的潜在相互作用。我们的方法包含两个互补的任务:用于相互作用预测的二元分类和用于识别相互作用蛋白质伙伴的条件序列生成。通过利用蛋白质语言模型和多模态融合,该框架在识别生物学相关相互作用方面表现出更高的准确性。为了进行实证验证,我们应用此方法预测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)与人类的相互作用,识别出训练数据中不存在的候选蛋白质,其中一些已得到独立研究的证实。这些预测为潜在治疗靶点提供了关键见解,有助于抗病毒药物和疫苗的设计。通过实现快速、经济高效的发现流程,我们的研究有助于大流行防范和公共卫生干预,凸显了其在对抗新兴传染病方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1441/12412403/b739a2f6732c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验