Robles-Hernández Jonathan-Siu-Loong, Hernández Sánchez Ivan Humberto, Jiménez-Mondragón Alfredo, Soto-Estrada Ana María, Miralrio Alan
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico.
Departamento de química, Universidad Autónoma Metropolitana, Ciudad de México 09310, Mexico.
ACS Omega. 2025 Aug 20;10(34):38799-38813. doi: 10.1021/acsomega.5c04086. eCollection 2025 Sep 2.
In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution. This fluorescence can be recovered by allowing the Ho-CNDs hybrid to interact with the oxalate anions. An in silico study supports this mechanism through density functional theory (DFT) analysis, which involves a charge transfer process in discrete systems of functionalized Ho-C. The above plot provides an approximation of the behavior of CNDs and highlights the electrostatic interaction in the [Ho-(CO)] complex. Based on this phenomenon, an environmentally friendly fluorescent turn-off/on sensor was developed to detect holmium ions Ho and oxalate ions in an aqueous solution. The quantitative detection of Ho ranges from 1.0 × 10 to 1.0 × 10 M, while oxalate concentrations vary from 4.5 × 10 to 3.6 × 10 M. The concentration of both species exhibited a linear relationship with the fluorescence intensity, characterized by a correlation coefficient of = 0.9801 and a Stern-Volmer constant = (1.09 × 10 ± 6 × 10) M. In addition, the Laplacian and electronic values obtained, within Bader's quantum theory of atoms in molecules, revealed ionic interactions between holmium-(III) and oxalate anions. Moreover, an analysis of the Mulliken and Hirshfeld charges confirmed a charge transfer process from CNDs to Ho.
在这项工作中,使用花瓣通过热解碳化法合成了碳纳米点(CNDs)。合成的碳纳米点在紫外区域表现出光吸收,其尾部延伸到可见光范围。当这些碳纳米点通过电荷转移过程与钬离子相互作用时,它们形成稀土 - 碳纳米点杂化物(RE - CNDs杂化物),导致水溶液中的荧光猝灭。通过使钬 - 碳纳米点杂化物与草酸根阴离子相互作用,可以恢复这种荧光。计算机模拟研究通过密度泛函理论(DFT)分析支持了这一机制,该分析涉及功能化钬 - C离散系统中的电荷转移过程。上述图表提供了碳纳米点行为的近似值,并突出了[Ho-(CO)]配合物中的静电相互作用。基于这一现象,开发了一种环境友好型荧光开/关传感器,用于检测水溶液中的钬离子Ho和草酸根离子。Ho的定量检测范围为1.0×10至1.0×10 M,而草酸盐浓度范围为4.5×10至3.6×10 M。两种物质的浓度与荧光强度呈线性关系,相关系数为 = 0.9801,斯特恩 - 沃尔默常数为 = (1.09×10 ± 6×10) M。此外,在巴德分子中原子的量子理论范围内获得的拉普拉斯值和电子值揭示了钬(III)与草酸根阴离子之间的离子相互作用。此外,对穆利肯电荷和赫什菲尔德电荷的分析证实了从碳纳米点到钬的电荷转移过程。