Suppr超能文献

通过双波长微立体光刻技术制备的3D打印微滤膜

3D-Printed Microfiltration Membranes via Dual-Wavelength Microstereolithography.

作者信息

Bazyar Hanieh, Wu Shang-Che, Gurbuz Irem, Papageorgiou Athanasios, van Vliet Wesley, Kostenko Alexander, Jean Jimmy G, Broggi Guillaume, Caglar Baris

机构信息

Transport Phenomena, Chemical Engineering Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands.

Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.

出版信息

ACS Omega. 2025 Aug 21;10(34):39174-39191. doi: 10.1021/acsomega.5c05746. eCollection 2025 Sep 2.

Abstract

A new and sustainable membrane manufacturing method is 3D printing, which reduces the number of fabrication steps, waste production, and the corresponding CO emissions. It further enables fabricating membranes with well-defined pore size, shape, and configuration. Here, we study 3D printing of microfiltration membranes using a novel dual-wavelength microstereolithography method. Via the gradient descent method, we are able to calculate and control a printable membrane with micrometer precision, enabling the possibility of printing membranes directly. Hydrophilic porous membranes with cylindrical microscale pores (≈10 μm in diameter) are printed from polyethylene glycol diacrylate (PEGDA). Membrane printing procedure and postprocessing steps are thoroughly investigated to print consistent membranes with uniform thickness. The membranes are fully characterized using SEM, FTIR, contact angle, and surface roughness measurements. The pure water permeability and separation performance of the 3D-printed membrane are further investigated and compared with those of commercial hydrophilic PTFE membranes. The 3D-printed membranes show similar permeability values to those of commercial membranes and could successfully separate oil droplets from oil-in-water emulsions. The membranes' permeability is further predicted using a 1D tube model and numerical modeling. The effect of material's property (e.g., swelling) and pore deformation during pressurization are studied to understand the discrepancy between the calculated and the experimental permeability values. The results provide valuable insights into the permeability prediction of 3D-printed membranes and the corresponding design optimization.

摘要

一种新型的可持续膜制造方法是3D打印,它减少了制造步骤、废物产生以及相应的碳排放。它还能够制造具有明确孔径、形状和结构的膜。在此,我们使用一种新型的双波长微立体光刻方法研究微滤膜的3D打印。通过梯度下降法,我们能够以微米精度计算和控制可打印的膜,从而实现直接打印膜的可能性。由聚乙二醇二丙烯酸酯(PEGDA)打印出具有圆柱形微米级孔(直径约10μm)的亲水性多孔膜。对膜的打印过程和后处理步骤进行了深入研究,以打印出厚度均匀的一致膜。使用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、接触角和表面粗糙度测量对膜进行了全面表征。进一步研究了3D打印膜的纯水渗透率和分离性能,并与商业亲水性聚四氟乙烯(PTFE)膜进行了比较。3D打印膜显示出与商业膜相似的渗透率值,并且能够成功地从水包油乳液中分离出油滴。使用一维管模型和数值模拟进一步预测了膜的渗透率。研究了材料特性(如溶胀)和加压过程中孔变形的影响,以了解计算渗透率值与实验渗透率值之间的差异。这些结果为3D打印膜的渗透率预测和相应的设计优化提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/422b/12409533/b2132cd51de2/ao5c05746_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验