Suppr超能文献

乳腺癌中癌症治疗相关心脏事件的机器学习建模:利用剂量组学和影像组学

Machine learning modeling of cancer treatment-related cardiac events in breast cancer: utilizing dosiomics and radiomics.

作者信息

Dincer Sefika, Akmansu Muge, Akyol Oya

机构信息

Department of Radiation Oncology, Van Yuzuncu Yil University School of Medicine, Van, Türkiye.

Department of Radiation Oncology, Gazi University School of Medicine, Ankara, Türkiye.

出版信息

Front Oncol. 2025 Aug 21;15:1557382. doi: 10.3389/fonc.2025.1557382. eCollection 2025.

Abstract

BACKGROUND

Personalized medicine has transformed disease management by focusing on individual characteristics, driven by advancements in genome mapping and biomarker discoveries.

OBJECTIVES

This study aims to develop a predictive model for the early detection of treatment-related cardiac side effects in breast cancer patients by integrating clinical data, high-sensitivity Troponin-T (hs-TropT), radiomics, and dosiomics. The ultimate goal is to identify subclinical cardiotoxicity before clinical symptoms manifest, enabling personalized surveillance strategies. It is the first study to utilize heart-segmented dosiomics in breast cancer patients.

METHODS AND MATERIALS

This retrospective study included clinical, dosimetric, radiomic, and dosiomic data from 42 women with localized breast cancer. Heart-specific Troponin T levels were measured 2-3 weeks post-radiotherapy, with 14 ng/L as the cutoff. Patients were grouped on this threshold to identify potential treatment-related cardiac events. Radiomics and dosiomics were extracted using PyRadiomics. Machine learning models were optimized using the Tree-based Pipeline Optimization Tool (TPOT), identifying the gradient-boosted classification as the best-performing algorithm. Feature selection was conducted using gradient-boosted recursive feature elimination. Model performance is assessed by the area under the curve (AUC).

RESULTS

A total of 111 dosiomic and 119 radiomic features were extracted per patient. The highest predictive accuracy was achieved using clinical, dosiomic, and radiomic parameters (validation cohort-AUC = 0.96), outperforming the clinical + dosimetric model (validation cohort-AUC = 0.67). Permutation tests confirmed the non-randomness of these two models results (p <0.05). Cross-validation indicated that the clinical + dosiomic + radiomic model had a fair-to-good generalizable performance (mean AUC = 80.33 ± 21%).

DISCUSSION

This study may demonstrate that radiomics and dosiomics provide superior predictive capabilities for cardiac events in breast cancer patients compared to traditional parameters.

摘要

背景

随着基因组图谱绘制和生物标志物发现技术的进步,个性化医疗通过关注个体特征改变了疾病管理方式。

目的

本研究旨在通过整合临床数据、高敏肌钙蛋白T(hs-TropT)、放射组学和剂量组学,开发一种用于早期检测乳腺癌患者治疗相关心脏副作用的预测模型。最终目标是在临床症状出现之前识别亚临床心脏毒性,从而制定个性化监测策略。这是第一项在乳腺癌患者中使用心脏分割剂量组学的研究。

方法和材料

这项回顾性研究纳入了42例局部乳腺癌女性患者的临床、剂量学、放射组学和剂量组学数据。放疗后2 - 3周测量心脏特异性肌钙蛋白T水平,以14 ng/L作为临界值。根据该临界值对患者进行分组,以识别潜在的治疗相关心脏事件。使用PyRadiomics提取放射组学和剂量组学特征。使用基于树的管道优化工具(TPOT)优化机器学习模型,确定梯度提升分类为性能最佳的算法。使用梯度提升递归特征消除进行特征选择。通过曲线下面积(AUC)评估模型性能。

结果

每位患者共提取了111个剂量组学特征和119个放射组学特征。使用临床、剂量组学和放射组学参数实现了最高的预测准确性(验证队列 - AUC = 0.96),优于临床 + 剂量学模型(验证队列 - AUC = 0.67)。置换检验证实了这两个模型结果的非随机性(p <0.05)。交叉验证表明临床 + 剂量组学 + 放射组学模型具有较好到良好的泛化性能(平均AUC = 80.33 ± 21%)。

讨论

本研究可能表明,与传统参数相比,放射组学和剂量组学为乳腺癌患者的心脏事件提供了卓越的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaf0/12408287/a5242ddd8d72/fonc-15-1557382-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验