Suppr超能文献

创伤指数对住院和重症监护病房收治的预测能力。

Predictive capacity of trauma indices for hospitalization and intensive care unit admission.

作者信息

Fernandes Lillian Caroline, Damasceno Daniel Bueno, Lima Fernanda Naves de Oliveira, Nogueira Lilia de Souza, Oliveira Ramon Antonio, Coelho Filipe Utuari de Andrade, Sousa Regina Marcia Cardoso de

机构信息

Universidade de São Paulo, Escola de Enfermagem, Departamento de Enfermagem Médico-Cirúrgica, São Paulo, SP, Brazil.

Hospital Israelita Albert Einstein, Faculdade de Ciências da Saúde Albert Einstein, São Paulo, SP, Brazil.

出版信息

Rev Esc Enferm USP. 2025 Sep 5;59:e20250092. doi: 10.1590/1980-220X-REEUSP-2025-0092en. eCollection 2025.

Abstract

OBJECTIVE

To compare the performance of trauma severity indices (ISS, NISS, REMS, mREMS) in predicting hospital and Intensive Care Unit (ICU) admission outcomes.

METHOD

Retrospective cohort study carried out with patients treated at the Emergency Room of a private hospital from January 2020 to January 2022. Medical records of adults with blunt, penetrating, or mixed trauma admitted up to 24 hours after the trauma were analyzed. Severity indices were used to predict hospital and ICU admission.

RESULTS

The sample consisted of 151 patients. The ISS and NISS showed good discrimination capacity for hospital and ICU admission (AUC/ROC from 0.84 to 0.85). The REMS and mREMS indices showed insufficient performance (AUC/ROC from 0.62 to 0.67).

CONCLUSION

The ISS and NISS indices were effective in predicting hospital and ICU admission and can be used in clinical practice; however, the use of REMS and mREMS cannot be recommended due to insufficient performance for these outcomes.

摘要

目的

比较创伤严重程度指数(损伤严重度评分[ISS]、新损伤严重度评分[NISS]、修订创伤评分[REMS]、改良修订创伤评分[mREMS])在预测医院及重症监护病房(ICU)收治结局方面的表现。

方法

对2020年1月至2022年1月在一家私立医院急诊室接受治疗的患者进行回顾性队列研究。分析创伤后24小时内入院的钝性、穿透性或混合性创伤成年患者的病历。使用严重程度指数预测医院及ICU收治情况。

结果

样本包括151例患者。ISS和NISS对医院及ICU收治显示出良好的区分能力(曲线下面积/受试者工作特征曲线[AUC/ROC]为0.84至0.85)。REMS和mREMS指数表现不佳(AUC/ROC为0.62至0.67)。

结论

ISS和NISS指数在预测医院及ICU收治方面有效,可用于临床实践;然而,由于在这些结局方面表现不佳,不建议使用REMS和mREMS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9695/12416370/26aa24efe3ef/1980-220X-reeusp-59-e20250092-gf01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验