Suppr超能文献

钴掺杂碳量子点与稀醋酸协同作用以消除耐抗菌细菌感染。

Cobalt-Doped Carbon Quantum Dots Work Synergistically with Weak Acetic Acid to Eliminate Antimicrobial-Resistant Bacterial Infections.

作者信息

Truskewycz Adam, Choi Benedict, Pedersen Line, Han Jianhua, MacGregor Melanie, Halberg Nils

机构信息

Department of Biomedicine, University of Bergen, Bergen 5009, Norway.

Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia.

出版信息

ACS Nano. 2025 Sep 23;19(37):33103-33117. doi: 10.1021/acsnano.5c03108. Epub 2025 Sep 8.

Abstract

When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy. The acidic environment alters the osmotic balance of microorganisms, forcing them to swell and speed up the internalization of the ultrasmall particles. The particles hyperpolarize the bacterial membranes and generate damaging peroxidase species, resulting in cellular lysis. In mice, cobalt-doped carbon quantum dots remove MRSA infection while allowing wounds to heal at rates equivalent to that of uninfected wounds. This work demonstrates how synergistic antimicrobial treatment strategies can be successfully used to combat antimicrobial-resistant infections.

摘要

当病原菌在伤口定植时,它们会营造一个碱性生态位,通过制造炎症环境来选择自身存活,而这种炎症环境会限制伤口的正常愈合进程。为了促进愈合,人们利用伤口酸化来破坏这一过程,并刺激成纤维细胞生长、提高伤口氧气浓度、降低蛋白水解活性以及重新激活宿主免疫系统。在本研究中,我们研发出了钴掺杂碳量子点纳米颗粒,它与稀醋酸协同作用,形成了一种强效的协同抗菌疗法。酸性环境改变了微生物的渗透平衡,迫使它们肿胀并加速超小颗粒的内化。这些颗粒使细菌膜超极化并产生具有破坏性的过氧化物酶,导致细胞裂解。在小鼠身上,钴掺杂碳量子点消除了耐甲氧西林金黄色葡萄球菌感染,同时使伤口以与未感染伤口相当的速度愈合。这项研究展示了协同抗菌治疗策略如何成功用于对抗耐药性感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验