Khiruddin Khalis, Mustafa Wan Azani, Islam Md Ashequl, Jamaludin Khairur Rijal, Alquran Hiam, Rahman Khairul Shakir Ab
Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis, Pauh Putra Campus, Arau, Perlis, Malaysia.
Advanced Computing (AdvComp), Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Campus Pauh Putra, Arau, Perlis, Malaysia.
PLoS One. 2025 Sep 8;20(9):e0330103. doi: 10.1371/journal.pone.0330103. eCollection 2025.
Cervical cancer remains a significant cause of female mortality worldwide, primarily due to abnormal cell growth in the cervix. This study proposes an automated classification method to enhance detection accuracy and efficiency, addressing contrast and noise issues in traditional diagnostic approaches. The impact of image enhancement on classification performance is evaluated by comparing transfer learning-based Convolutional Neural Network (CNN) models trained on both original and enhanced images. This study employs transfer learning with pre-trained CNNs to classify preprocessed Pap smear images into three categories. Data augmentation, including rotations, flips, and shifts, enhances variability and prevents overfitting. The OneCycle learning rate schedule dynamically adjusts the learning rate, improving training efficiency. To enhance image quality, the Denoised Pairing Adaptive Gamma with Clipping Histogram Equalization (DPAGCHE) method improves contrast and reduces noise. The evaluation involves five pre-trained CNN models and the publicly available Herlev dataset, implemented in MATLAB Online. The ResNet50 model trained on the DPAGCHE-enhanced dataset achieves the highest classification performance, with 84.15% accuracy, along with improved specificity, recall, precision, and F1-score. ResNet50's residual connections mitigate vanishing gradient issues and enhance deep feature extraction. Accordingly, the DPAGCHE preprocessing significantly improves classification performance, leading to a 53.65% increase in F1-score and 44.29% in precision. In contrast, the Baseline CNN reaches only 66.67% accuracy, highlighting the advantage of deeper architectures combined with enhanced preprocessing. These findings suggest integrating DPAGCHE-enhanced preprocessing with deep learning improves automated cervical cancer detection. In particular, ResNet50 demonstrates the best performance, reinforcing the effectiveness of contrast enhancement and noise reduction in aiding classification models.
宫颈癌仍然是全球女性死亡的一个重要原因,主要是由于宫颈细胞异常生长。本研究提出了一种自动分类方法,以提高检测的准确性和效率,解决传统诊断方法中的对比度和噪声问题。通过比较在原始图像和增强图像上训练的基于迁移学习的卷积神经网络(CNN)模型,评估图像增强对分类性能的影响。本研究采用预训练的CNN进行迁移学习,将预处理后的巴氏涂片图像分为三类。数据增强,包括旋转、翻转和平移,增加了数据的多样性并防止过拟合。OneCycle学习率调度动态调整学习率,提高训练效率。为了提高图像质量,去噪配对自适应伽马与裁剪直方图均衡化(DPAGCHE)方法提高了对比度并降低了噪声。评估涉及五个预训练的CNN模型和公开可用的Herlev数据集,在MATLAB Online中实现。在DPAGCHE增强数据集上训练的ResNet50模型实现了最高的分类性能,准确率为84.15%,同时特异性、召回率、精确率和F1分数也有所提高。ResNet50的残差连接减轻了梯度消失问题并增强了深度特征提取。因此,DPAGCHE预处理显著提高了分类性能,F1分数提高了53.65%,精确率提高了44.29%。相比之下,基线CNN的准确率仅为66.67%,突出了更深架构与增强预处理相结合的优势。这些发现表明,将DPAGCHE增强预处理与深度学习相结合可改善宫颈癌的自动检测。特别是,ResNet50表现出最佳性能,加强了对比度增强和降噪对辅助分类模型的有效性。