Bellassen Laura, David Keren, Lampert Bar, Sarusi-Portuguez Avital, Tsoory Michael, Lubliner Jazz, Hornstein Eran, Osherov Michael, Milo Ron, Brenner Ori, Becker-Herman Shirly, Shachar Idit
Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.
PLoS Biol. 2025 Sep 8;23(9):e3003373. doi: 10.1371/journal.pbio.3003373. eCollection 2025 Sep.
Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, capable of modulating immune cell activity through both activating and inhibitory signals. In this study, we investigated the expression and function of SLAMF5 in CNS-resident and peripheral myeloid cells using the murine model of MS, experimental autoimmune encephalomyelitis (EAE). Our findings demonstrate that both total and brain-specific SLAMF5 deficiency in myeloid cells leads to decreased expression of activation and costimulatory molecules, including MHC class II (MHCII) and CD80. This downregulation is mediated, at least in part, through the transcription factor BHLHE40 and its regulation of CD52, resulting in delayed onset and reduced progression of the disease. Furthermore, pharmacological blockade of SLAMF5 in the brain halted disease progression and reduced the expression of myeloid activation markers. In human studies, SLAMF5 blockade in peripheral monocytes from MS patients and in induced pluripotent stem cell (iPSC)-derived microglia reduced the expression of HLA-DR, CD80, and CD52. Together, these results identify SLAMF5 as a key regulator of myeloid cell activation in neuroinflammation and suggest that it may represent a promising therapeutic target for autoimmune disorders such as MS.
多发性硬化症(MS)是一种慢性神经疾病,其特征为中枢神经系统(CNS)脱髓鞘,导致广泛的身体和认知障碍。中枢神经系统内的髓样细胞,包括小胶质细胞和边界相关巨噬细胞,在与MS相关的神经炎症过程中起核心作用。这些细胞的激活有助于局部炎症反应,并促进更多免疫细胞招募到中枢神经系统。信号淋巴细胞激活分子家族5(SLAMF5)是一种细胞表面受体,作为一种同源粘附分子发挥作用,能够通过激活和抑制信号调节免疫细胞活性。在本研究中,我们使用MS的小鼠模型实验性自身免疫性脑脊髓炎(EAE),研究了SLAMF5在中枢神经系统驻留和外周髓样细胞中的表达及功能。我们的研究结果表明,髓样细胞中总的和脑特异性SLAMF5缺陷均导致激活分子和共刺激分子表达降低,包括主要组织相容性复合体II类分子(MHCII)和CD80。这种下调至少部分是通过转录因子BHLHE40及其对CD52的调节介导的,导致疾病发病延迟和进展减缓。此外,对大脑中SLAMF5的药物阻断阻止了疾病进展,并降低了髓样激活标志物的表达。在人体研究中,对MS患者外周单核细胞和诱导多能干细胞(iPSC)衍生的小胶质细胞中的SLAMF5进行阻断,降低了HLA-DR、CD80和CD52的表达。总之,这些结果确定SLAMF5是神经炎症中髓样细胞激活的关键调节因子,并表明它可能是MS等自身免疫性疾病的一个有前景的治疗靶点。