Suppr超能文献

通过吡啶配体配位定制非晶态镍铁金属有机框架中的活性位点以增强析氧性能

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

作者信息

Wu Jiali, Chong Ran, Li Zhichun, Xu Shiyou, Liu Yinuo, He Xiaobo, Qian Junfeng, Zhang Jiye, Wang Liang, Zhang Zhi-Hui

机构信息

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2025 Sep 8. doi: 10.1021/acsami.5c14277.

Abstract

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.1 mV dec. Compared to monometallic Ni-PyThr and unmodified NiFe-Thr-4:1 controls, NiFe-PyThr-4:1 shows significantly enhanced electrocatalytic activity and long-term stability. Density Functional Theory (DFT) calculations reveal that Fe serves as the principal active site, while the l-PyThr ligand modulates the electronic structure and adsorption behavior of key intermediates, effectively lowering the energy barrier of the rate-determining step. This performance enhancement arises from the synergistic effect of Fe doping and pyridine coordination, which increases the accessible active site density and promotes charge transfer. This work offers mechanistic insights into the structure-function relationship in amorphous MOFs and presents a scalable, low-temperature synthesis route for the rational design of efficient electrocatalysts toward practical water-splitting applications.

摘要

开发用于析氧反应(OER)的高性能、经济高效的非贵金属催化剂对于通过水电解推进可持续制氢至关重要。在此,我们报告了一种简便温和的策略,使用吡啶修饰的苏氨酸(l-PyThr)作为有机配体来合成非晶态双金属有机框架材料(NiFe-MOFs)。优化后的NiFe-PyThr-4:1催化剂表现出显著的OER活性,分别仅需162和222 mV的低过电位即可实现10和100 mA cm的电流密度,同时具有34.1 mV dec的小塔菲尔斜率。与单金属Ni-PyThr和未修饰的NiFe-Thr-4:1对照相比,NiFe-PyThr-4:1显示出显著增强的电催化活性和长期稳定性。密度泛函理论(DFT)计算表明,Fe作为主要活性位点,而l-PyThr配体调节关键中间体的电子结构和吸附行为,有效降低了速率决定步骤的能垒。这种性能提升源于Fe掺杂和吡啶配位的协同效应,增加了可及活性位点密度并促进了电荷转移。这项工作为非晶态MOF中的结构-功能关系提供了机理见解,并为合理设计用于实际水分解应用的高效电催化剂提供了一种可扩展的低温合成路线。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验