Carolus Hans, Díaz-García Judith, Biriukov Vladislav, Jacobs Stef, Sofras Dimitrios, Pageau Alicia, Lobo Romero Celia, Vinken Lore, Escribano Pilar, Guinea Jesús, Lagrou Katrien, Landry Christian R, Gabaldón Toni, Van Dijck Patrick
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, Canada.
mBio. 2025 Sep 9:e0141925. doi: 10.1128/mbio.01419-25.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance. Integrated analyses reveal a recurrent association between Erg3 loss-of-function and echinocandin resistance mediated by Fks variation across species, but exclude Erg3 loss-of-function as an independent resistance mechanism. Advances in Fks structural biology and insights into echinocandin-Fks interactions support a model of epistatic cross-talk between membrane sterols and Fks function. Understanding this interaction is crucial, as it may underlie not only acquired echinocandin resistance but also the broader development of multidrug resistance across major antifungal drug classes.IMPORTANCEA clinical case in which the combination of variation in a β‑1,3‑glucan synthase-encoding gene () and the sterol desaturase-encoding gene seems to underlie echinocandin resistance, prompted us to hypothesize that membrane sterol changes may modulate, rather than independently cause, Fks‑linked resistance. We were able to explore this hypothesis due to recent developments in the field, such as the release of the FungAMR database, which enables global co‑occurrence analyses; AI‑driven variant effect predictors such as Evolutionary Scale Modeling (ESM) that can explore the impact of thousands of alleles; the cryo‑EM resolution of the Fks1 protein; and the first mechanistic model of echinocandin‑Fks1 binding. Together, these advances provide the structural and computational framework needed to delineate our hypothesis that specific sterol variants might influence β‑1,3‑glucan synthase function and drug binding. Further surveillance of this potentially epistatic interaction can be of significant clinical importance amid rising multidrug‑resistant infections, as overlooking such interactions could lead to under‑calling resistance and misguided therapy.
棘白菌素靶向真菌β-1,3-葡聚糖合酶(Fks),对治疗侵袭性真菌感染至关重要,但耐药性报道日益增多。虽然耐药性通常通过Fks热点区域的突变产生,但新出现的证据表明,由于突变导致的膜甾醇组成变化也起了一定作用。在此,我们报告一例()临床病例,其中Fks1和Fks2的联合突变而非单独的Fks1突变似乎赋予了棘白菌素耐药性。综合分析揭示了跨物种的Erg3功能丧失与由Fks变异介导的棘白菌素耐药性之间的反复关联,但排除了Erg3功能丧失作为独立耐药机制的可能性。Fks结构生物学的进展以及对棘白菌素-Fks相互作用的深入了解支持了膜甾醇与Fks功能之间上位性相互作用的模型。理解这种相互作用至关重要,因为它不仅可能是获得性棘白菌素耐药性的基础,也是主要抗真菌药物类别中更广泛的多药耐药性发展的基础。重要性在一例临床病例中,编码β-1,3-葡聚糖合酶的基因(Fks1)和编码甾醇去饱和酶的基因(Erg3)的变异组合似乎是棘白菌素耐药性的基础,这促使我们推测膜甾醇变化可能调节而非独立导致与Fks相关的耐药性。由于该领域的最新进展,如FungAMR数据库的发布(可进行全球共现分析)、人工智能驱动的变异效应预测工具(如进化尺度建模(ESM),可探索数千个Fks等位基因的影响)、Fks1蛋白的冷冻电镜分辨率以及棘白菌素-Fks1结合的首个机制模型,我们得以探索这一假设。总之,这些进展提供了结构和计算框架,以阐明我们的假设,即特定的甾醇变异可能影响β-1,3-葡聚糖合酶功能和药物结合。在多重耐药感染不断增加的情况下,对这种潜在的上位性相互作用进行进一步监测可能具有重要的临床意义,因为忽视这种相互作用可能导致对耐药性的低估和治疗的误导。