Najaf Tomaraei Golnaz, Binney Sierra, Stratton Ryan, Zhuang Houlong, Wade Jennifer L
The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.
ACS Appl Mater Interfaces. 2025 Sep 24;17(38):53547-53562. doi: 10.1021/acsami.5c12939. Epub 2025 Sep 9.
This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration. However, a low-temperature moisture-driven regeneration pathway is uniquely effective for the QA-based sorbent. To inform the energetics of a moisture-based CO separation (i.e., a moisture swing), we compare calorimetric water sorption enthalpies to Clausius-Clapeyron-derived total isosteric enthalpies. To our knowledge, this includes the first direct calorimetric measurement of water sorption enthalpy in a QA-based sorbent. Both methods reveal monolayer-multilayer sorption behavior for both sorbents, with the QA-based material having slightly higher water sorption enthalpies at the initially occupied strongest sorption sites. Molecular modeling supports this observation, showing higher water sorption energies and denser charge distributions in the QA-based sorbent at λ = 1 mmol/mmol. Mixed gas experiments in the QA-based sorbent show that not only does water influence CO binding, but CO influences water uptake through counterion-dependent hydration states, and that moisture swing responsiveness in this material causes hydration-induced CO release and drying-induced CO uptake, an important feature for low-energy CO separation under ambient conditions. Overall, the two classes of sorbents offer distinct pathways for the CO separation.
本研究考察了两种化学性质不同的聚苯乙烯 - 二乙烯基苯系离子交换吸附剂对水和二氧化碳的吸附行为:一种是伯胺型,另一种是带有(碳酸氢)根抗衡阴离子的永久带电强碱季铵(QA)基团型。我们通过同步热重分析、量热分析、气体分析和分子模拟方法,比较它们与水和二氧化碳的不同相互作用,以评估它们在直接空气捕获等稀二氧化碳分离方面的性能。热脱附和混合(加热 + 低温水合)脱附实验表明,基于QA的吸附剂对水和二氧化碳的结合力比胺类吸附剂更强,但在中等温度下会发生降解,限制了其与变温再生的兼容性。然而,低温水分驱动的再生途径对基于QA的吸附剂具有独特的有效性。为了了解基于水分的二氧化碳分离(即变湿吸附)的能量学,我们将量热法测定的水吸附焓与克劳修斯 - 克拉佩龙推导的总等量焓进行了比较。据我们所知,这包括首次对基于QA的吸附剂中水吸附焓的直接量热测量。两种方法都揭示了两种吸附剂的单层 - 多层吸附行为,基于QA的材料在最初占据的最强吸附位点处具有略高的水吸附焓。分子模拟支持了这一观察结果,表明在λ = 1 mmol/mmol时,基于QA的吸附剂具有更高的水吸附能和更密集的电荷分布。基于QA的吸附剂的混合气体实验表明,不仅水会影响二氧化碳的结合,而且二氧化碳会通过反离子依赖的水合状态影响水的吸收,并且这种材料中的变湿吸附响应性会导致水合诱导的二氧化碳释放和干燥诱导的二氧化碳吸收,这是在环境条件下进行低能耗二氧化碳分离的一个重要特征。总体而言,这两类吸附剂为二氧化碳分离提供了不同的途径。