Suppr超能文献

基于文本属性图的纯变压器预训练框架。

A Pure Transformer Pretraining Framework on Text-attributed Graphs.

作者信息

Song Yu, Mao Haitao, Xiao Jiachen, Liu Jingzhe, Chen Zhikai, Jin Wei, Yang Carl, Tang Jiliang, Liu Hui

机构信息

Michigan State University.

Emory University.

出版信息

Proc Mach Learn Res. 2024 Nov;269.

Abstract

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features. These high-quality features reduce the previously critical role of graph structure, resulting in a modest performance gap between Graph Neural Networks (GNNs) and structure-agnostic Multi-Layer Perceptrons (MLPs). Motivated by this, we introduce a feature-centric pretraining perspective by treating graph structure as a prior and leveraging the rich, unified feature space to learn refined interaction patterns that generalizes across graphs. Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walk and employs masked feature reconstruction to capture pairwise proximity in the LLM-unified feature space using a standard Transformer. By utilizing unified text representations rather than varying structures, GSPT alleviates structural heterogeneity and achieves significantly better transferability among graphs within the same domain. Our approach can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets. The source code is publicly available at https://github.com/SongYYYY/GSPT.

摘要

预训练在从大规模数据中获取通用知识方面起着关键作用,正如计算机视觉(CV)和自然语言处理(NLP)中的大型模型所证明的那样,取得了显著成功。然而,由于特征异质性和结构异质性所代表的基本挑战,图领域的进展仍然有限。最近,人们通过在文本属性图(TAG)上使用大语言模型(LLM)来解决特征异质性问题,方法是生成固定长度的文本表示作为节点特征。这些高质量特征降低了图结构以前的关键作用,导致图神经网络(GNN)与结构无关的多层感知器(MLP)之间存在适度的性能差距。受此启发,我们引入了一种以特征为中心的预训练视角,将图结构视为先验,并利用丰富、统一的特征空间来学习跨图泛化的精细交互模式。我们的框架,即基于Transformer的图序列预训练(GSPT),通过随机游走对节点上下文进行采样,并采用掩码特征重建,以使用标准Transformer在LLM统一的特征空间中捕获成对的邻近关系。通过利用统一的文本表示而非变化的结构,GSPT减轻了结构异质性,并在同一领域内的图之间实现了显著更好的可迁移性。我们的方法可以很容易地适用于节点分类和链接预测,在各种数据集上都取得了有前景的实证成功。源代码可在https://github.com/SongYYYY/GSPT上公开获取。

相似文献

6
DRG: A dual relational graph framework for course recommendation.
Neural Netw. 2025 Aug 14;193:107984. doi: 10.1016/j.neunet.2025.107984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验