Garay József, Varga Tamás, Csiszár Villő, Móri Tamás F, Szilágyi András
HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary.
Bolyai Institute, University of Szeged, Szeged, Hungary.
PLoS One. 2025 Sep 10;20(9):e0331044. doi: 10.1371/journal.pone.0331044. eCollection 2025.
We develop a model that integrates evolutionary matrix game theory with Mendelian genetics. Within this framework, we define the genotype dynamics that describes how the frequencies of genotypes change in sexual diploid populations. We show that our formal definition of evolutionary stability for genotype distributions implies the stability of the corresponding interior equilibrium point in the genotype dynamics. We apply our findings to a model of familial selection, where the survival rates of siblings in monogamous families are determined by a matrix game between them. According to Mendelian inheritance, the behaviour associated with each genotype is uniquely determined by an autosomal (recessive-dominant or intermediate) allele pair. We provide general conditions for the evolutionary stability of homozygote populations. We find that the payoff matrix and the genotype-phenotype map together determine this stability. In numerical examples we consider the prisoner's dilemma between siblings. Based on the evolutionary stability of the pure cooperator and defector states, we provide a potential classification of the genotype dynamics. We distinguish between two cases: one in which the total survival rate is higher in cooperator-cooperator interactions ("coordinated" case), and another in which it is higher in cooperator-defector interactions ("anti-coordinated" case). In the coordinated case, global stability of cooperator homozygote population is possible but not necessary, since bistability, stable coexistence of cooperators and defectors, and even global stability of the defector homozygote state are all possible, depending on the interaction between the phenotypic payoff matrix and the genotype-phenotype mapping. In the anti-coordinated case, the cooperator homozygote population cannot be stable. Thus, similarly to the group selection theory, the welfare of the family (the sum of the survival rates of siblings) governs the emergence of cooperative behavior among family members. Finally, in the case of the donation game, the classical Hamilton's rule determines whether the homozygous cooperator or the homozygous defector population is stable; bistability or stable coexistence are impossible.
我们开发了一个将进化矩阵博弈理论与孟德尔遗传学相结合的模型。在此框架内,我们定义了基因型动态,它描述了有性二倍体种群中基因型频率如何变化。我们表明,我们对基因型分布的进化稳定性的形式化定义意味着基因型动态中相应内部平衡点的稳定性。我们将研究结果应用于家庭选择模型,其中一夫一妻制家庭中兄弟姐妹的存活率由他们之间的矩阵博弈决定。根据孟德尔遗传,与每个基因型相关的行为由常染色体(隐性-显性或中间型)等位基因对唯一确定。我们提供了纯合子种群进化稳定性的一般条件。我们发现收益矩阵和基因型-表型图谱共同决定了这种稳定性。在数值示例中,我们考虑了兄弟姐妹之间的囚徒困境。基于纯合作者和背叛者状态的进化稳定性,我们对基因型动态进行了潜在分类。我们区分两种情况:一种是合作者-合作者相互作用中的总存活率更高(“协调”情况),另一种是合作者-背叛者相互作用中的总存活率更高(“反协调”情况)。在协调情况下,合作者纯合子种群的全局稳定性是可能的但不是必然的,因为双稳态、合作者和背叛者的稳定共存,甚至背叛者纯合子状态的全局稳定性都有可能,这取决于表型收益矩阵和基因型-表型映射之间的相互作用。在反协调情况下,合作者纯合子种群不可能稳定。因此,与群体选择理论类似,家庭的福利(兄弟姐妹存活率的总和)支配着家庭成员之间合作行为的出现。最后,在捐赠博弈的情况下,经典的汉密尔顿法则决定了纯合子合作者或纯合子背叛者种群是否稳定;双稳态或稳定共存是不可能的。