Lee Kwangjun, Pennartz Cyriel M A, Mejias Jorge F
Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Research Priority Area Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
PLoS Comput Biol. 2025 Sep 10;21(9):e1013469. doi: 10.1371/journal.pcbi.1013469. eCollection 2025 Sep.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals). Theoretical models of PC often rely on high-level approaches, and therefore implementations detailing which neurons or pathways are used to compute prediction errors or adapt the internal representations, as well as their level of agreement with biological circuitry, are currently missing. Here we propose a computational model of PC, which integrates a neuroanatomically informed hierarchy of two cortical areas with a simplified laminar organization and cell-type-specific connectivity between excitatory, PV, SST and VIP cells. Our model efficiently performs PC, even in the presence of external and internal noise, by forming latent representations of naturalistic visual input (MNIST, fashion-MNIST and grayscale CIFAR-10) via Hebbian learning and using them to predict sensory input by minimizing prediction errors. The model assumes that both positive and negative prediction errors are computed by stereotypical excitatory-PV-SST-VIP circuits with the same structure but different incoming input. During sensory inference, neural oscillatory activity emerges in the system due to interactions between representation and prediction error microcircuits, with optogenetics-inspired inactivation protocols revealing a differentiated role of PV, SST and VIP cell types in such dynamics. Finally, our model shows anomalous responses to deviant stimuli within series of same-image presentations, in agreement with experimental results on mismatch negativity and oddball paradigms. We argue that our model constitutes an important step to better understand the circuits mediating PC in real cortical networks.
预测编码(PC)提出,我们的大脑就像一台推理机器,生成一个世界的内部模型,并将预测误差(即外部感官证据与内部预测信号之间的差异)降至最低。PC的理论模型通常依赖于高级方法,因此目前缺少详细说明哪些神经元或神经通路用于计算预测误差或调整内部表征的实现方式,以及它们与生物电路的一致程度。在这里,我们提出了一个PC的计算模型,该模型将两个具有简化分层组织以及兴奋性、PV、SST和VIP细胞之间特定细胞类型连接的皮质区域的神经解剖学信息层次结构整合在一起。我们的模型通过Hebbian学习形成自然视觉输入(MNIST、时尚MNIST和灰度CIFAR-10)的潜在表征,并利用它们通过最小化预测误差来预测感官输入,即使在存在外部和内部噪声的情况下也能有效地执行PC。该模型假设正、负预测误差均由具有相同结构但输入不同的典型兴奋性-PV-SST-VIP回路计算得出。在感官推理过程中,由于表征与预测误差微电路之间的相互作用,系统中会出现神经振荡活动,光遗传学启发的失活协议揭示了PV、SST和VIP细胞类型在这种动态过程中的不同作用。最后,我们的模型在同一系列图像呈现中对异常刺激表现出异常反应,这与失配负波和奇偶数范式实验结果一致。我们认为,我们的模型是更好地理解真实皮质网络中介导PC的电路的重要一步。