Cong Xiangna, Shah Muhammad Najeeb Ullah, Huang Yuxiang, Wang Chengcai, He Wenlong
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics & Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
ACS Appl Mater Interfaces. 2025 Sep 24;17(38):53951-53959. doi: 10.1021/acsami.5c13429. Epub 2025 Sep 11.
Past studies have shown that vdWHs possess considerable potential for photodetector applications. However, the current performance of 2D material photodetectors falls short of practical demands due to pronounced interfacial recombination, insufficient photoconductive gain, and inefficient photocarrier collection. Straddling (type I) 2D vdWH notably diminishes interfacial trapping, amplifies the photoconductive gain, and facilitates anisotropic photocarrier collection. Tunnel FET (TFET), fabricated from these type I 2D materials, provides enhanced electrostatic control and the capability for substantially higher on-current densities and on/off ratios. However, gaining an understanding of the intricate tunneling mechanisms within type I heterostructures continues to present a significant challenge. In this study, we demonstrate gate-tunable type I tunnel heterostructures utilizing a HfS/SnS vdWHs. By employing a single electrostatic gating mechanism with hexagonal boron nitride (h-BN) as the dielectric layer, a variety of electrical transport behaviors, such as forward rectification, Esaki tunneling, and backward rectification, are realized within the same heterostructure at low gate voltage levels of ±3 V. The heterostructure demonstrates distinct room-temperature negative differential resistance (NDR) characteristics, evident at a low bias voltage of ±0.4 V. In darkness, direct tunneling (DT) is the dominant transport mechanism. However, under illumination, the heterostructure exhibits a shift to the Fowler-Nordheim tunneling (FNT) behavior. The type I heterostructures achieved a photoresponsivity () of 43 A W under 455 nm illumination. Furthermore, the device shows an exceptional detectivity (*) of 4.3 × 10 Jones and broadband detection capabilities, covering the spectra from ultraviolet to visible light. Our work broadens the range of capabilities for 2D semiconductor devices, highlighting a compelling potential for their utilization in future optoelectronic systems.
过去的研究表明,垂直方向范德华异质结(vdWHs)在光电探测器应用方面具有相当大的潜力。然而,由于明显的界面复合、光导增益不足以及光载流子收集效率低下,二维材料光电探测器的当前性能仍无法满足实际需求。跨越型(I型)二维vdWH显著减少了界面陷阱,放大了光导增益,并促进了各向异性光载流子收集。由这些I型二维材料制成的隧道场效应晶体管(TFET)提供了增强的静电控制能力,以及实现更高导通电流密度和开/关比的能力。然而,深入了解I型异质结构内复杂的隧穿机制仍然是一项重大挑战。在本研究中,我们展示了利用HfS/SnS vdWHs的栅极可调谐I型隧道异质结构。通过采用以六方氮化硼(h-BN)为介电层的单一静电门控机制,在±3 V的低栅极电压水平下,在同一异质结构内实现了多种电输运行为,如正向整流、江崎隧穿和反向整流。该异质结构在室温下表现出明显的负微分电阻(NDR)特性,在±0.4 V的低偏置电压下即可观察到。在黑暗中,直接隧穿(DT)是主要的输运机制。然而,在光照下,该异质结构表现出向福勒-诺德海姆隧穿(FNT)行为的转变。I型异质结构在455 nm光照下实现了43 A W的光响应度()。此外,该器件表现出4.3×10琼斯的卓越探测率(*)和宽带探测能力,覆盖从紫外到可见光的光谱范围。我们的工作拓宽了二维半导体器件的功能范围,凸显了其在未来光电子系统中应用的巨大潜力。