Suppr超能文献

麻疹病毒V蛋白C末端结构域的游离形式的溶液结构及STAT2靶向作用的机制分析

Solution structure of the C-terminal domain of the measles virus V protein in its free form and mechanistic analysis of STAT2 targeting.

作者信息

Morita Kaho, Goda Nanaka, Kimoto Madoka, Inaba-Inoue Satomi, Yabuno Nana, Sugiyama Aoi, Kumeta Hiroyuki, Ose Toyoyuki

机构信息

Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.

出版信息

J Virol. 2025 Sep 11:e0073925. doi: 10.1128/jvi.00739-25.

Abstract

Viruses commonly evade the host antiviral interferon (IFN) response by targeting key components of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, typically STAT1 and STAT2. Among the well-characterized viral IFN antagonists, measles virus (MeV), a member of the genus, encodes a multifunctional V protein (MeV-V) that directly interacts with STAT proteins. The C-terminal domain (CTD) of MeV-V selectively binds to STAT2, disrupting the formation of the IFN-stimulated gene factor 3 (ISGF3) complex by inhibiting the STAT2-interferon regulatory factor 9 (IRF9) association. Here, we report a solution structure covering the MeV-V in its unbound form, as determined by nuclear magnetic resonance spectroscopy. While the overall architecture, including a distinctive zinc-finger motif, conforms to previously predicted features, our analysis reveals unexpected features, including distinct proline conformers that may have functional relevance. Molecular mapping analysis, combined with relaxation measurements, identified key residues implicated in STAT2 recognition and revealed substantial conformational flexibility within the domain. These findings suggest that MeV-V employs a shared binding surface for STAT2 binding as for melanoma differentiation-associated protein 5 (MDA5) interaction, underscoring its structural adaptability. As V proteins across species engage diverse host pathways, including immune signaling, cell cycle regulation, and apoptosis, by targeting multiple proteins, we propose that the dynamic yet folded nature of the V underlies its ability to serve as a versatile interaction module in host-pathogen interplay.IMPORTANCEThe measles virus V protein, encoded by the P gene, orchestrates the broad modulation of host responses, including immune evasion, by interacting with multiple host factors. With regard to structural studies of V, to date, only one protein from parainfluenza virus 5 has been crystallographically analyzed in complex with host targets. Despite the conserved nature of the V among paramyxoviruses, structural information on the unbound state of this domain is lacking, and current insights largely rely on computational predictions based on the structure of the bound form. Our nuclear magnetic resonance work provides the first structure of the V from paramyxoviruses in its free form. In accordance with our previously presented data, we further confirmed that the MeV-V binding site of STAT2 overlaps that of IRF9. The conformational flexibility observed within the folded CTD provides the structural basis for its ability to engage with multiple host targets with high specificity.

摘要

病毒通常通过靶向Janus激酶-信号转导子和转录激活子(JAK-STAT)途径的关键组分(通常是STAT1和STAT2)来逃避宿主的抗病毒干扰素(IFN)反应。在已充分表征的病毒IFN拮抗剂中,麻疹病毒(MeV)属于该属的成员,编码一种多功能V蛋白(MeV-V),它直接与STAT蛋白相互作用。MeV-V的C末端结构域(CTD)选择性地结合STAT2,通过抑制STAT2-干扰素调节因子9(IRF9)的结合来破坏干扰素刺激基因因子3(ISGF3)复合物的形成。在此,我们报告了通过核磁共振光谱法测定的未结合形式的MeV-V的溶液结构。虽然其整体结构,包括独特的锌指基序,符合先前预测的特征,但我们的分析揭示了意想不到的特征,包括可能具有功能相关性的不同脯氨酸构象。分子图谱分析与弛豫测量相结合,确定了与STAT2识别有关的关键残基,并揭示了该结构域内显著的构象灵活性。这些发现表明,MeV-V利用与黑色素瘤分化相关蛋白5(MDA5)相互作用相同的结合表面来结合STAT2,突出了其结构适应性。由于不同物种的V蛋白通过靶向多种蛋白质参与多种宿主途径,包括免疫信号传导、细胞周期调控和细胞凋亡,我们提出V的动态但折叠的性质是其在宿主-病原体相互作用中作为通用相互作用模块的能力的基础。

重要性

由P基因编码的麻疹病毒V蛋白通过与多种宿主因子相互作用,精心协调宿主反应的广泛调节,包括免疫逃避。关于V的结构研究,迄今为止,只有来自副流感病毒5的一种蛋白与宿主靶标形成复合物的晶体结构得到了分析。尽管副粘病毒中V具有保守性,但缺乏该结构域未结合状态的结构信息,目前的见解很大程度上依赖于基于结合形式结构的计算预测。我们的核磁共振研究提供了副粘病毒V的游离形式的首个结构。根据我们之前发表的数据,我们进一步证实了STAT2的MeV-V结合位点与IRF9的结合位点重叠。在折叠的CTD内观察到的构象灵活性为其以高特异性与多种宿主靶标相互作用的能力提供了结构基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验