Jin Chenyang, Chen Jianan, Miao Yan, Tian Xin, Wang Jia, He Fan, Liu Yijie, Xu Yong
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China.
Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Mater Today Bio. 2025 Aug 25;34:102244. doi: 10.1016/j.mtbio.2025.102244. eCollection 2025 Oct.
Intervertebral disc degeneration (IVDD) is a leading cause of spinal disorders, affecting millions globally, particularly the aging population. Current treatments, however, fail to fully restore disc structure and function, highlighting the need for regenerative therapies. This study aims to construct an antioxidant artificial nucleus pulposus (NP) by incorporating cuttlefish ink nanoparticles (CINPs) into GelMA microspheres, thereby enhancing nucleus pulposus cell (NPC) viability and extracellular matrix (ECM) synthesis. Oxidative stress is a key driver of disc degeneration. CINPs, rich in proline and fucose, significantly enhanced the antioxidant capacity of NPCs, as evidenced by reduced intracellular reactive oxygen species (ROS) levels and activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (NRF2/HO-1) pathway in our study. In vitro experiments demonstrated that GelMA@CINPs microspheres significantly enhanced NPC antioxidant capacity and promoted ECM secretion. Implantation of these microspheres into intervertebral discs (IVDs) of rats following discectomy validated their therapeutic efficacy in promoting NP tissue regeneration. In this experiment, the introduction of CINPs facilitates a dual antioxidant mechanism, comprising chemical (e.g., free radical scavenging by eumelanin via HAT/SET mechanisms) and biological (activation of the NRF2/HO-1 pathway) components. This synergistic approach directly addresses oxidative stress, a critical driver of intervertebral disc degeneration (IVDD) progression. This research introduces a novel strategy for improving cell-material interactions in tissue engineering, which enhances the potential for constructing an artificial NP and effectively treating IVDD.
椎间盘退变(IVDD)是脊柱疾病的主要原因,全球数百万人受其影响,尤其是老年人群。然而,目前的治疗方法无法完全恢复椎间盘的结构和功能,这凸显了再生疗法的必要性。本研究旨在通过将乌贼墨纳米颗粒(CINPs)掺入甲基丙烯酰化明胶(GelMA)微球中来构建一种抗氧化人工髓核(NP),从而提高髓核细胞(NPC)的活力和细胞外基质(ECM)的合成。氧化应激是椎间盘退变的关键驱动因素。富含脯氨酸和岩藻糖的CINPs显著增强了NPC的抗氧化能力,在我们的研究中,细胞内活性氧(ROS)水平降低以及核因子红细胞2相关因子2/血红素加氧酶-1(NRF2/HO-1)通路的激活证明了这一点。体外实验表明,GelMA@CINPs微球显著增强了NPC的抗氧化能力并促进了ECM的分泌。在大鼠椎间盘切除术后将这些微球植入椎间盘(IVD),验证了它们在促进NP组织再生方面的治疗效果。在本实验中,CINPs的引入促进了一种双重抗氧化机制,包括化学(例如真黑素通过氢原子转移/单电子转移机制清除自由基)和生物学(激活NRF2/HO-1通路)成分。这种协同方法直接解决了氧化应激问题,氧化应激是椎间盘退变(IVDD)进展的关键驱动因素。本研究介绍了一种改善组织工程中细胞与材料相互作用的新策略,增强了构建人工NP并有效治疗IVDD的潜力。