Suppr超能文献

非增强脑CT上的自动缺血性中风病灶检测:一项关于非增强CT上人工智能中风病灶检测的大规模临床可行性测试

Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT.

作者信息

Heo JoonNyung, Ryu Wi-Sun, Chung Jong-Won, Kim Chi Kyung, Kim Joon-Tae, Lee Myungjae, Kim Dongmin, Sunwoo Leonard, Ospel Johanna M, Singh Nishita, Bae Hee-Joon, Kim Beom Joon

机构信息

Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.

Artificial Intelligence Research Center, JLK Inc., Seoul, Republic of Korea.

出版信息

Front Neurosci. 2025 Aug 26;19:1643479. doi: 10.3389/fnins.2025.1643479. eCollection 2025.

Abstract

BACKGROUND

Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy.

METHODS

In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes.

RESULTS

A total of 458 subjects were evaluated for external validation (mean age, 64 years ± 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort ( = 603; mean age, 69 years ± 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes ( = 0.60,  < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453],  < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453],  < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626;  = 0.003).

CONCLUSION

The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.

摘要

背景

非增强CT(NCCT)是急性脑卒中成像中广泛使用的成像方式,但常常无法检测到细微的早期缺血性改变。这种低估可能导致临床医生忽略组织水平的信息。本研究旨在开发并外部验证用于在NCCT上检测缺血性病变的自动化软件,并评估其在接受血管内血栓切除术的脑卒中患者中的临床可行性。

方法

在这项回顾性多中心队列研究(2011年5月至2024年4月)中,使用来自2214例急性缺血性脑卒中患者的配对NCCT和扩散加权成像(DWI)数据训练了一种改良的3D U-Net模型。在458名受试者中进行了外部验证。在603例接受血管内血栓切除术且实现完全再通的患者中评估了临床可行性。将模型输出与专家标注的DWI病变进行比较,以评估敏感性、特异性和体积相关性。临床终点包括随访时DWI病变体积、出血性转化以及3个月改良Rankin量表结果。

结果

共对458名受试者进行了外部验证(平均年龄64岁±16岁;男性265名)。该模型的敏感性为75.3%(95%CI,70.9-79.9%),特异性为79.1%(95%CI,77.1-81.3%)。在可行性队列(n=603;平均年龄69岁±13岁;男性362名)中,基于NCCT得出的病变体积与随访时DWI体积相关(r=0.60,P<0.001)。病变体积>50mL与良好预后降低相关(17.3%[26/150]对54.2%[246/453],P<0.001),且出血性转化率更高(66.0%[99/150]对46.3%[210/453],P<0.001)。影像组学特征比单独的临床变量能更好地预测出血性转化(受试者操作特征曲线下面积,0.833对0.626;P=0.003)。

结论

基于NCCT的自动化病变检测模型在接受血管内血栓切除术治疗的脑卒中患者中显示出可靠的诊断性能,并提供了临床相关的预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验