Sun Jia, Ju Guang-Liang, Qu Yu-Hong, Xie Hui-Hui, Sun Hai-Xin, Han Si-Yuan, Li Yun-Fang, Jia Xiu-Qin, Yang Qi
Department of Radiology, Beijing Chao-Yang Hospital, No. 8 GongrenTiyuchangNanlu, Chaoyang District, 100020, Beijing, China.
Neusoft Medical Systems Co., Ltd, Shenyang, China.
Clin Neuroradiol. 2025 Sep 4. doi: 10.1007/s00062-025-01559-8.
Non-contrast computed tomography (NCCT) is a first-line imaging technique for determining treatment options for acute ischemic stroke (AIS). However, its poor contrast and signal-to-noise ratio limit the diagnosis accuracy for radiologists, and automated AIS lesion segmentation using NCCT also remains a challenge. This study aims to develop a segmentation method for ischemic lesions in NCCT scans, combining symmetry-based principles with the nnUNet segmentation model.
Our novel approach integrates a Generative Module (GM) utilizing 2.5 D ResUNet and an Upstream Segmentation Module (UM) with additional inputs and constraints under the 3D nnUNet segmentation model, utilizing symmetry-based learning to enhance the identification and segmentation of ischemic regions. We utilized the publicly accessible AISD dataset for our experiments. This dataset contains 397 NCCT scans of acute ischemic stroke taken within 24 h of the onset of symptoms. Our method was trained and validated using 345 scans, while the remaining 52 scans were used for internal testing. Additionally, we included 60 positive cases (External Set 1) with segmentation labels obtained from our hospital for external validation of the segmentation task. External Set 2 was employed to evaluate the model's sensitivity and specificity in case-dimensional classification, further assessing its clinical performance. We introduced innovative features such as an intensity-based lesion probability (ILP) function and specific input channels for suspected lesion areas to augment the model's sensitivity and specificity.
The methodology demonstrated commendable segmentation efficacy, attaining a Dice Similarity Coefficient (DSC) of 0.6720 and a Hausdorff Distance (HD95) of 35.28 on the internal test dataset. Similarly, on the external test dataset, the method yielded satisfactory segmentation outcomes, with a DSC of 0.4891 and an HD 95 of 46.06. These metrics reflect a substantial overlap with expert-drawn boundaries and demonstrate the model's potential for reliable clinical application. In terms of classification performance, the method achieved an Area Under the Curve (AUC) of 0.991 on the external test set, surpassing the performance of nnUNet, which recorded an AUC of 0.947.
This study introduces a novel segmentation technique for ischemic lesions in NCCT scans, leveraging symmetry-based principles integrated with nnUNet, which shows potential for improving clinical decision-making in stroke care.
非增强计算机断层扫描(NCCT)是确定急性缺血性卒中(AIS)治疗方案的一线成像技术。然而,其对比度和信噪比不佳限制了放射科医生的诊断准确性,使用NCCT进行AIS病变自动分割也仍然是一项挑战。本研究旨在开发一种用于NCCT扫描中缺血性病变的分割方法,将基于对称性的原理与nnUNet分割模型相结合。
我们的新方法在3D nnUNet分割模型下集成了一个利用2.5D ResUNet的生成模块(GM)和一个带有额外输入与约束的上游分割模块(UM),利用基于对称性的学习来增强缺血区域的识别与分割。我们利用公开可用的AISD数据集进行实验。该数据集包含397例症状发作后24小时内采集的急性缺血性卒中的NCCT扫描。我们的方法使用345次扫描进行训练和验证,其余52次扫描用于内部测试。此外,我们纳入了60例阳性病例(外部数据集1),其分割标签来自我们医院,用于分割任务的外部验证。外部数据集2用于评估模型在病例维度分类中的敏感性和特异性,进一步评估其临床性能。我们引入了基于强度的病变概率(ILP)函数和疑似病变区域的特定输入通道等创新特征,以提高模型的敏感性和特异性。
该方法显示出值得称赞的分割效果,在内部测试数据集上的骰子相似系数(DSC)为(0.6720),豪斯多夫距离(HD95)为(35.28)。同样,在外部测试数据集上,该方法产生了令人满意的分割结果,DSC为(0.4891),HD95为(46.06)。这些指标反映了与专家绘制边界的大量重叠,并证明了该模型在可靠临床应用中的潜力。在分类性能方面,该方法在外部测试集上的曲线下面积(AUC)为(0.991),超过了nnUNet的性能,nnUNet的AUC为(0.947)。
本研究介绍了一种用于NCCT扫描中缺血性病变的新型分割技术,利用基于对称性的原理与nnUNet相结合,显示出在改善卒中护理临床决策方面的潜力。