Suppr超能文献

多种疾病模式与潜在的院外临床服务需求的关联:来自具有全国代表性的中国老年人样本的结果

Association of multimorbidity patterns with potential out-of-hospital clinical service needs: results from a nationally representative sample of older Chinese.

作者信息

Yang Jing, Xiao Jian, Zhang Zeyun, Lin Jianlin, Cao Li

机构信息

School of Public Health, Hainan Medical University, Haikou, China.

Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China.

出版信息

Front Public Health. 2025 Aug 26;13:1586215. doi: 10.3389/fpubh.2025.1586215. eCollection 2025.

Abstract

BACKGROUND

The rising prevalence of multimorbidity strains hospital-centric healthcare. Urgent attention is needed to understand potential out-of-hospital health service needs and inform policy for effective public health practices.

METHODS

Utilizing data from the China Health and Retirement Longitudinal Study (CHARLS), we first employed latent class analysis (LCA) to identify distinct patterns of multimorbidity. Subsequently, basic characteristics associated with each identified multimorbidity pattern were investigated using logistic regression models. Third, employing logistic mixed-effects models, we examined the associations between multimorbidity status, specific multimorbidity patterns, and Potential out-of-hospital clinical services need (POHCN). Fourth, network analysis was performed to explore the complex comorbidity network and identify central nodes within the patterns of multimorbidity. Finally, a stratified analysis by sex and age groups was conducted to examine the patterns and relationships between multimorbidity and POHCN across different sex and age categories.

RESULTS

Incorporating 11,215 participants aged 45 and above, with 51.4% being women, our study employed latent class analysis to delineate four latent patterns for 13 chronic diseases: "Kidney arthritic" (20%), "Lung-stomach disorder" (58%), "Asthma pattern" (5%), and "Multisystem pattern" (17%). Participants with multimorbidity exhibited a heightened potential demand for out-of-hospital care (OR = 2.53, 95% CI: 2.17-2.96). Notably, the "Multisystem pattern" displayed the highest demand (OR = 3.93, 95% CI: 3.23-4.79), followed by "Kidney arthritic" (OR = 3.50, 95% CI: 2.56-4.78), "Lung-stomach disorder" (OR = 3.09, 95% CI: 2.48-3.86), and "Asthma pattern" (OR = 2.07, 95% CI: 1.77-2.43). These associations persisted across diverse age groups (45-59, 60 + years). The results of the sex measurement uncertainty analysis indicated that the sex index adheres to the principles of measurement uncertainty. Network analysis identified heart disease, memory-related disease, and heart as pivotal nodes in the comorbid network. Furthermore, stratified analysis revealed statistically significant heterogeneity in the association between multimorbidity and POHCN across different sex and age groups.

CONCLUSION

This study links multimorbidity to potential out-of-hospital medical service needs, identifying crucial diseases in the network. Crafting effective medical policies necessitates aligning clinical and public health practices with the characteristics of multimorbidity and its pivotal diseases.

摘要

背景

多重疾病的患病率不断上升,给以医院为中心的医疗保健带来了压力。迫切需要关注院外潜在的卫生服务需求,并为有效的公共卫生实践提供政策依据。

方法

利用中国健康与养老追踪调查(CHARLS)的数据,我们首先采用潜在类别分析(LCA)来识别多重疾病的不同模式。随后,使用逻辑回归模型研究与每种识别出的多重疾病模式相关的基本特征。第三,采用逻辑混合效应模型,我们检验了多重疾病状态、特定多重疾病模式与潜在院外临床服务需求(POHCN)之间的关联。第四,进行网络分析以探索复杂的共病网络,并识别多重疾病模式中的核心节点。最后,按性别和年龄组进行分层分析,以检验不同性别和年龄类别中多重疾病与POHCN之间的模式和关系。

结果

我们的研究纳入了11215名45岁及以上的参与者,其中51.4%为女性,采用潜在类别分析为13种慢性病描绘了四种潜在模式:“肾脏关节炎型”(20%)、“肺胃失调型”(58%)、“哮喘型”(5%)和“多系统型”(17%)。患有多重疾病的参与者对院外护理的潜在需求更高(OR = 2.53,95% CI:2.17 - 2.96)。值得注意的是,“多系统型”的需求最高(OR = 3.93,95% CI:3.23 - 4.79),其次是“肾脏关节炎型”(OR = 3.50,95% CI:2.56 - 4.78)、“肺胃失调型”(OR = 3.09,95% CI:2.48 - 3.86)和“哮喘型”(OR = 2.07,95% CI:1.77 - 2.43)。这些关联在不同年龄组(45 - 59岁、60岁及以上)中均持续存在。性别测量不确定性分析的结果表明,性别指数符合测量不确定性的原则。网络分析确定心脏病、记忆相关疾病和心脏是共病网络中的关键节点。此外,分层分析显示不同性别和年龄组中多重疾病与POHCN之间的关联存在统计学上的显著异质性。

结论

本研究将多重疾病与潜在的院外医疗服务需求联系起来,识别了网络中的关键疾病。制定有效的医疗政策需要使临床和公共卫生实践与多重疾病及其关键疾病的特征相一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e088/12417407/e27a84c89570/fpubh-13-1586215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验