Suppr超能文献

用于手语理解的神经网络。

The Neural Network for Sign Language Comprehension.

作者信息

Terhune-Cotter Brennan, Emmorey Karen

机构信息

Joint Doctoral Program in Language and Communicative Disorders, San Diego State University, University of California, San Diego, California, USA.

School of Speech, Language and Hearing Sciences, San Diego State University, San Diego, California, USA.

出版信息

Lang Linguist Compass. 2025 Jul-Aug;19(4). doi: 10.1111/lnc3.70018. Epub 2025 Jul 23.

Abstract

Sign languages differ dramatically from spoken languages in their linguistic articulators (the hands/face vs. the vocal tract) and in how they are perceived (visually vs. auditorily), which can impact how they are processed in the brain. This review focuses on the neural network involved in sign language comprehension, from processing the initial visual input to parsing meaningful sentences. We describe how the signer's brain decodes the visual signed signal into distinct and linguistically relevant representations (e.g., handshapes and movements) primarily in occipital and posterior temporal regions. These representations are converted into stable sign-based phonological representations in posterior temporal and parietal regions, which activate lexical-semantic representations. The higher-level processes which create combinatorial semantic-syntactic constructions from these lexical representations are subserved by a frontotemporal network of regions which overlaps with the network for spoken languages. The broad outline of this network is partially specific to the visual modality and partially supramodal in nature. Important avenues for future research include identifying and characterising patterns of activation and connectivity within macroanatomical regions which appear to serve multiple functional roles in sign language comprehension.

摘要

手语在语言发音器官(手/脸与声道)以及感知方式(视觉与听觉)上与口语有显著差异,这会影响它们在大脑中的处理方式。本综述聚焦于参与手语理解的神经网络,从处理初始视觉输入到解析有意义的句子。我们描述了手语者的大脑如何主要在枕叶和颞叶后部区域将视觉手语信号解码为不同的、与语言相关的表征(如手型和动作)。这些表征在颞叶后部和顶叶区域被转换为稳定的基于手语的语音表征,进而激活词汇语义表征。从这些词汇表征创建组合语义句法结构的高级过程由一个额颞叶区域网络支持,该网络与口语的网络部分重叠。这个网络的大致轮廓部分特定于视觉模态,部分本质上是超模态的。未来研究的重要途径包括识别和表征宏观解剖区域内的激活和连接模式,这些区域在手语理解中似乎发挥多种功能作用。

相似文献

1
The Neural Network for Sign Language Comprehension.用于手语理解的神经网络。
Lang Linguist Compass. 2025 Jul-Aug;19(4). doi: 10.1111/lnc3.70018. Epub 2025 Jul 23.
10
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

本文引用的文献

2
An ERP investigation of perceptual vs motoric iconicity in sign production.一项关于手语产生中知觉型和运动型象似性的 ERP 研究。
Neuropsychologia. 2024 Oct 10;203:108966. doi: 10.1016/j.neuropsychologia.2024.108966. Epub 2024 Aug 3.
7
Iconicity in sign language production: Task matters.手语产出中的象似性:任务很重要。
Neuropsychologia. 2022 Mar 12;167:108166. doi: 10.1016/j.neuropsychologia.2022.108166. Epub 2022 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验