Yu Donghui, Gu Baihe, Zhu Mengye, Davidson Michael
Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China.
School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China.
iScience. 2025 Aug 5;28(9):113267. doi: 10.1016/j.isci.2025.113267. eCollection 2025 Sep 19.
To meet global climate targets, countries aim to triple renewable energy capacity and rapidly deploy other low-carbon technologies by 2030. We assess the critical mineral demand required to meet these goals using a bottom-up, scenario-based approach and examine how mineral bottlenecks affect sub-technology choices. Our analysis yields three key findings. First, annual demand for critical minerals is projected to rise 6-fold, from 4.7 million tons in 2022 to 30 million tons by 2030. Second, minerals such as natural graphite, cobalt, lithium, tellurium, indium, silver, aluminum, copper, and rare earth elements may face supply constraints. Third, specific sub-technologies depend heavily on certain minerals: cadmium and tellurium shortages could limit thin-film photovoltaics; indium scarcity may hinder perovskite tandem cells; rare earths are vital for permanent-magnet wind turbines; and lithium is a key for all-solid-state batteries. Improving material efficiency and advancing mineral-efficient technologies will be essential for a resilient energy transition.
为实现全球气候目标,各国旨在到2030年将可再生能源产能提高两倍,并迅速部署其他低碳技术。我们采用自下而上、基于情景的方法评估实现这些目标所需的关键矿产需求,并研究矿产瓶颈如何影响子技术选择。我们的分析得出三个关键发现。第一,预计关键矿产的年需求量将增长6倍,从2022年的470万吨增至2030年的3000万吨。第二,天然石墨、钴、锂、碲、铟、银、铝、铜和稀土元素等矿产可能面临供应限制。第三,特定子技术严重依赖某些矿产:镉和碲短缺可能限制薄膜光伏技术;铟稀缺可能阻碍钙钛矿串联电池;稀土对永磁风力涡轮机至关重要;锂是全固态电池的关键。提高材料效率和推进矿产高效技术对于实现韧性能源转型至关重要。