VanHook Cortney, Abusuampeh Daniel, Pollard Jordan
School of Social Work, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
School of Social Work, University of Pittsburgh, Pittsburgh, PA, United States.
Front Health Serv. 2025 Aug 26;5:1654106. doi: 10.3389/frhs.2025.1654106. eCollection 2025.
This article examines how generative artificial intelligence (AI) can simulate, analyze, and enhance mental health care journeys for individuals from diverse backgrounds, supporting improved access, personalization, and outcomes.
DESIGN/METHODOLOGY/APPROACH: An AI-generated case study of Marcus Johnson, a 24-year-old Black software developer in Atlanta, models the interplay of personal, cultural, and systemic factors affecting mental health care access. The analysis integrates Andersen's Behavioral Model, Penchansky and Thomas's Dimensions of Access, and Measurement Based Care (MBC) to systematically identify barriers, facilitators, and opportunities for data-driven intervention and tailored care.
The case study demonstrates that generative AI simulations, especially when combined with MBC, can replicate real-world complexities, inform clinical decision-making, and personalize interventions through ongoing assessment, symptom monitoring, and collaborative planning. Telehealth, flexible scheduling, and cultural competence are highlighted as critical for bridging access gaps and improving outcomes.
ORIGINALITY/VALUE: This work is among the first to synthesize leading access-to-care models, MBC, and generative AI to simulate and improve mental health care pathways. The approach offers a novel framework for educators, clinicians, and system designers to address the full spectrum of access challenges and clinical needs in contemporary populations.
Generative AI, anchored in evidence-based frameworks, enables mental health professionals and trainees to test and refine care strategies in a risk-free environment, promoting more equitable, responsive, and effective mental health systems for all.
本文探讨生成式人工智能(AI)如何模拟、分析和改善不同背景个体的心理健康护理历程,以支持改善可及性、个性化服务及护理效果。
设计/方法/途径:对亚特兰大一位24岁的黑人软件开发人员马库斯·约翰逊进行人工智能生成的案例研究,模拟影响心理健康护理可及性的个人、文化和系统因素之间的相互作用。该分析整合了安德森行为模型、彭钱斯基和托马斯的可及性维度以及基于测量的护理(MBC),以系统地识别数据驱动干预和个性化护理的障碍、促进因素和机会。
该案例研究表明,生成式人工智能模拟,特别是与MBC相结合时,可以复制现实世界的复杂性,为临床决策提供信息,并通过持续评估、症状监测和协作规划实现干预的个性化。远程医疗、灵活的预约安排和文化能力被强调为弥合可及性差距和改善护理效果的关键因素。
原创性/价值:这项工作是首批将领先的护理可及性模型、MBC和生成式人工智能进行综合,以模拟和改善心理健康护理途径的研究之一。该方法为教育工作者、临床医生和系统设计师提供了一个新颖的框架,以应对当代人群中全方位的可及性挑战和临床需求。
基于循证框架的生成式人工智能使心理健康专业人员和实习生能够在无风险环境中测试和完善护理策略,为所有人促进更公平、更有响应性和更有效的心理健康系统。