Leyhe Johanna Rosemarie, Reinecke-Lüthge Carla Marie, Jamous Ala, Bähr Mathias, Kheirandish Sasan, Alimi Aria, Avakian Artjom, L Maier Ilko
Department of Neurology, University Medical Center Göttingen, Germany.
Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Germany.
Comput Struct Biotechnol J. 2025 Aug 21;28:321-329. doi: 10.1016/j.csbj.2025.08.022. eCollection 2025.
Three-dimensional simulations of cerebral blood flow are a highly promising approach for individualized diagnostics and therapy planning in cerebrovascular disease. The aim of this study is to validate simulated blood flow velocities generated by a patient-specific model using the innovative Stroke Quantification software (StroQ, ELPIS Simulation GmbH, Germany).
In this study, consecutive patients with transient ischemic attack (TIA) or minor ischemic stroke (defined as NIHSS ≤ 4) treated at a tertiary stroke center have been investigated. The patients underwent both computed tomography angiography (CTA) and neurovascular ultrasound (nvUS) of the extra- and intracranial arteries. Patients with relatively large artery atherosclerosis (LAA) such as significant plaques or stenosis are excluded in this study. 3D-models of the brain-supplying arteries were created using standard CTA with 0.75 mm slice thickness. Blood flow of the intracranial arteries was simulated using finite volume and fluid-structure interaction methods and employing nvUS-derived flow velocities and systemic blood pressure of the extracranial internal carotid arteries (ICA) and vertebral arteries (VA). The simulated flow velocities of all intracranial arteries were then compared to the transcranial color-coded duplex sonography TCCD-derived measurements using intraclass correlation coefficients, Pearson correlations, Bland-Altman, and scatter plots.
Patient-specific artery models were created for 53 consecutive ischemic stroke patients without relevant LAA. The results demonstrated a high accuracy between TCCD- and simulation-derived velocities for peak systolic velocities (PSV). Intraclass correlation coefficients were moderate for three arteries and good to excellent for all remaining intracranial arteries (ICC ≥ 0.750, p < 0.001). Overall, only small differences between simulation-derived velocities and TCCD were observed (PSV: mean difference -2.6 cm/s, -4.5 %, end-diastolic velocities (EDV): mean difference 0.5 cm/s, 1.4 % and mean flow velocity (MFV): mean difference -0.3 cm/s, -3.3 %). Pearson correlations between TCCD- and simulation-derived PSV, EDV and MFV velocities were significant for all intracranial arteries (p < 0.001).
The study revealed accurate flow velocity values derived from the patient-specific artery simulation of the intracranial arteries as compared to the clinical gold standard represented by TCCD. Simulation of cerebral perfusion may support personalized medicine by helping to tailor blood pressure targets and guide decisions on invasive reperfusion strategies (e.g., carotid endarterectomy or stenting), based on individual vascular anatomy and physiological parameters.
脑血流的三维模拟是脑血管疾病个体化诊断和治疗规划中一种非常有前景的方法。本研究的目的是使用创新的卒中量化软件(StroQ,德国ELPIS Simulation GmbH公司)验证患者特异性模型生成的模拟血流速度。
在本研究中,对一家三级卒中中心连续收治的短暂性脑缺血发作(TIA)或轻度缺血性卒中(定义为美国国立卫生研究院卒中量表[NIHSS]≤4)患者进行了调查。患者接受了颅外和颅内动脉的计算机断层血管造影(CTA)和神经血管超声(nvUS)检查。本研究排除了患有相对较大动脉粥样硬化(LAA)如显著斑块或狭窄的患者。使用层厚为0.75毫米的标准CTA创建了脑供血动脉的三维模型。使用有限体积法和流固耦合方法,采用nvUS得出的血流速度以及颅外颈内动脉(ICA)和椎动脉(VA)的全身血压,对颅内动脉的血流进行了模拟。然后,使用组内相关系数、Pearson相关性、Bland-Altman分析和散点图,将所有颅内动脉的模拟血流速度与经颅彩色编码双功超声(TCCD)得出的测量值进行比较。
为53例连续的无相关LAA的缺血性卒中患者创建了患者特异性动脉模型。结果表明,TCCD得出的和模拟得出的收缩期峰值速度(PSV)之间具有很高的准确性。三条动脉的组内相关系数为中等,其余所有颅内动脉的组内相关系数为良好至优秀(ICC≥0.750,p<0.001)。总体而言,模拟得出的速度与TCCD之间仅观察到微小差异(PSV:平均差异-2.6厘米/秒,-4.5%;舒张末期速度[EDV]:平均差异0.5厘米/秒,1.4%;平均血流速度[MFV]:平均差异-0.3厘米/秒,-3.3%)。TCCD得出的和模拟得出的PSV、EDV和MFV速度之间的Pearson相关性在所有颅内动脉中均具有显著性(p<0.001)。
该研究表明,与以TCCD为代表的临床金标准相比,从颅内动脉的患者特异性动脉模拟得出的血流速度值是准确的。脑灌注模拟可以通过帮助调整血压目标,并根据个体血管解剖结构和生理参数指导关于侵入性再灌注策略(如颈动脉内膜切除术或支架置入术)的决策,来支持个性化医疗。