Wolny Juliusz A, Li Xiaochun, Dîrtu Marinela, Gröpl Konstantin, Hochdörffer Tim, Paulsen Hauke, Garcia Yann, Schünemann Volker
Department of Physics, University of Kaiserslautern-Landau Erwin-Schrödinger-Str. 46 67663 Kaiserslautern Germany
Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Louvain-la-Neuve 1348 Belgium.
RSC Adv. 2025 Sep 9;15(38):32009-32030. doi: 10.1039/d5ra03472h. eCollection 2025 Aug 29.
The Gibbs free energy of spin transitions in the heptanuclear models of 1D Fe(ii) spin crossover 1,2,4-triazole complexes has been estimated using DFT methods. The complexes modelled were [Fe(Htrz)trz]BF (Htrz = 4-1,2,4-triazole, trz = 1,2,4-triazolato), 1 the dehydrated and hydrated [Fe(NHtrz)]Cl (NHtrz = 4-amino-1,2,4-triazole), 2 and 2a, and Fe(NHtrz), 3. For each complex, the electronic energy and the vibrational energies were calculated for a heptanuclear model containing five inner Fe(ii) centres in the high-spin (HS) and the low-spin (LS) states. All other possible 18 spin isomers with one to four HS centres were also modelled. Results obtained using different exchange-correlation functionals based on the B3LYP one show that each spin isomer with a particular permutation of HS and LS centres within the pentanuclear linear unit has distinctive electronic and vibrational energies. The electronic energy of each spin isomer was found to be equal to the sum of the adiabatic electronic energy of the spin transition given by the difference in energies between the LS and HS states and the strain energy . This quantity is non-zero for any spin isomer containing both LS and HS centres. Unlike , which has also been determined experimentally by calorimetric measurements, is independent of the applied functional. Calculations of the temperature dependence of the Gibbs free energy change Δ of 19 possible spin transitions for heptanuclear model systems reveals that strain effects lead to an additional destabilisation of the spin isomers containing both LS and HS centres. The actual strain pattern depends on the chemical structure of the model molecule.
已使用密度泛函理论(DFT)方法估算了一维铁(II)自旋交叉1,2,4 - 三唑配合物的七核模型中自旋转变的吉布斯自由能。所模拟的配合物有[Fe(Htrz)trz]BF(Htrz = 4 - 1,2,4 - 三唑,trz = 1,2,4 - 三唑基),即1;脱水和水合的[Fe(NHtrz)]Cl(NHtrz = 4 - 氨基 - 1,2,4 - 三唑),即2和2a;以及Fe(NHtrz),即3。对于每个配合物,针对包含五个处于高自旋(HS)和低自旋(LS)状态的内部铁(II)中心的七核模型计算了电子能量和振动能量。还对所有其他可能的具有一到四个HS中心的18种自旋异构体进行了建模。基于B3LYP的不同交换相关泛函得到的结果表明,在五核线性单元内具有特定HS和LS中心排列的每个自旋异构体都具有独特的电子和振动能量。发现每个自旋异构体的电子能量等于自旋转变的绝热电子能量(由LS和HS状态之间的能量差给出)与应变能之和。对于任何同时包含LS和HS中心的自旋异构体,该量都不为零。与也已通过量热测量实验确定的不同,与所应用的泛函无关。对七核模型系统19种可能的自旋转变的吉布斯自由能变化Δ的温度依赖性计算表明,应变效应导致同时包含LS和HS中心的自旋异构体进一步不稳定。实际的应变模式取决于模型分子的化学结构。