Yu Yongchang, Chen Hanning, Stafford Christopher M, Kong Lingchen, Mckenzie Kevin R, Wagner Michael J, Liu Xitong
Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW, Washington, D.C. 20052, United States.
Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States.
Environ Sci Technol. 2025 Sep 23;59(37):20075-20086. doi: 10.1021/acs.est.5c06546. Epub 2025 Sep 11.
Electrochemical lithium intercalation has emerged as a promising direct lithium extraction (DLE) technology owing to its high lithium selectivity and avoidance of chemical usage. While geothermal brines are a rich source of lithium ions (Li), they also have high concentrations of coexisting constituents, including Fe(II), Mn(II), and silica, which can form scaling layers on the electrode surface, thus presenting substantial challenges for Li extraction. This study systematically investigates the effects of Fe(II), Mn(II), and silica on Li extraction by lithium iron phosphate (LiFePO, LFP) electrodes and the mechanisms underlying performance degradation. Through cycling experiments in impurity-laden solutions, we demonstrate that Fe(II) severely compromises LFP electrode performance, reducing capacity, Faradaic efficiency, and Li/Na selectivity. This performance degradation is attributed to the formation of an iron (hydr)oxide scaling layer and the bonding of Fe ions with oxygen atoms in the LFP lattice, leading to accelerated reconstruction of the crystal structure. In contrast, Mn(II) and silica cause minimal performance loss despite contributing to scaling. Finally, we propose a cost-effective pretreatment method to remove Fe(II) from geothermal brines, extending the LFP electrode lifespan while maintaining high Li/Na selectivity. These findings provide critical insights for scaling mitigation in electrochemical lithium extraction from complex brine sources.
电化学锂嵌入已成为一种很有前景的直接锂提取(DLE)技术,因为它具有高锂选择性且无需使用化学药剂。虽然地热卤水是锂离子(Li)的丰富来源,但它们也含有高浓度的共存成分,包括Fe(II)、Mn(II)和二氧化硅,这些成分会在电极表面形成垢层,从而给锂提取带来巨大挑战。本研究系统地研究了Fe(II)、Mn(II)和二氧化硅对磷酸铁锂(LiFePO,LFP)电极锂提取的影响以及性能下降的潜在机制。通过在含杂质溶液中的循环实验,我们证明Fe(II)严重损害LFP电极性能,降低容量、法拉第效率和Li/Na选择性。这种性能下降归因于铁(氢)氧化物垢层的形成以及Fe离子与LFP晶格中氧原子的键合,导致晶体结构加速重构。相比之下,Mn(II)和二氧化硅尽管会导致结垢,但只会造成最小的性能损失。最后,我们提出了一种经济高效的预处理方法,用于从地热卤水中去除Fe(II),延长LFP电极寿命,同时保持高Li/Na选择性。这些发现为从复杂卤水来源进行电化学锂提取时减轻结垢提供了关键见解。